Hes- so/// s

b Haute Ecole d'Ingénierie H e S
Hochschule fiir Ingenieurwissenschaften

Degree Programme
Systems Engineering

Major Infotronics

Bachelor’s thesis
Diploma 2023

Rithner Aurelien

Real-time line crossing detection

Professor
Carrino Francesco

Expert
Donzé Célien

Submission date of the report
25.08.2023

*
HES-SO Valais-Wallis ¢ rue de I'Industrie 23 « 1950 Sion (: é \\
+41 58 606 85 23 * hei@hevs.ch + www.hevs.ch/hei swissunjversities =
© ° N EQUAL-SALARY \ j
CERTIFIED =

HES-SO Valais Données du travail de diplome FO 1.2.02.07.EB

- che/31/05/2021
. Aufgabenstellung der Bachelorarbeit
Filiere / Studiengang Année académique / Studienjahr | No TB / Nr. BA
SYND 2022-23 1T/2023/87
Mandant / Auftraggeber Etudiant / Student Lieu d’exécution / Ausfiihrungsort
X HES—SO Valais Aurélien Rithner X HES—SO Valais
O Industrie Professeur / Dozent [1 Industrie
] Etablissement partenaire Francesco Carrino [l Etablissement partenaire
Partnerinstitution Partnerinstitution
Travail confidentiel / vertrauliche Arbeit | Expert / Experte (données complétes)
0 oui/ja XI non/ nein Célien Donzé
Haute Ecole Arc — Ingénierie, Espace de I'Europe 11, 2000 Neuchatel

Titre / Titel
Real-time Line Crossing Detection and 2D/3D mapping
[using a low-cost camera drone]

Description / Beschreibung

Ce travail de dipldme vise a mettre en place un systéme pour détecter automatiquement, a I'aide de caméras, le
dépassement d’une ligne de marquage au sol par un véhicule. Le systéme doit fonctionner en temps réel.

Le cas d’application visé est la Summer School | de la HEI-VS dans laquelle des petits véhicules, dont la forme
peut varier, doivent compléter un parcours sans dépasser certaines limites tracées au sol pour éviter d'encourir des
pénalités.

Comme deuxieme proof-of-concept (POC), ce projet investiguera également les possibilités et les contraintes
offertes par I'utilisation d’'un drone low-cost muni de camera (plutét qu’une installation fixe).

Objectifs / Ziele

e Analyse de I'état de I'art des algorithmes pour la détection de dépassement

e Réalisation d'un POC avec des caméras fixes.

e Evaluation des performances

o Objectif optionnel : analyse-réalisation-évaluation POC avec drone « low-cost ».
Taches / Aufgaben

1. Analyse

a. Spécifications du probleme : contraintes et possibilités en termes d’installations, sécurité, bande
passante, puissance de calcul, etc.

b. Bref état de 'art des algorithmes pour la détection des lignes de marquage au sol et de
dépassement.

c. Prise en main des caméras [et du drone]
d. Définition des métriques d’évaluation des performances
2. Conception
a. Définition de I'architecture du systeme (hardware)
b. Définition de I'architecture du systeme (software)
c. Définition de 1-2 prototypes intermédiaires vers le POC final
d.
3. Développement et évaluation

a. Développement itératif (développement — test) vers la réalisation d’'un proof of concept
fonctionnel

b. Evaluation du systéme en termes des métriques définie pendant la phase d’analyse.

Rapport regu le / Schlussbericht erhaltenam Visa du secrétariat / Visum des Sekretariats

Signature ou visa / Unterschrift oder Visum Délais / Termine

Responsable de l'orientation / Attribution du théme / Ausgabe des Auftrags:
Leiter der Vertiefungsrichtung: 15.05.2023

Présentation intermédiaire / Zwischenprésentation:
19 - 20.06.2023

- Remise du rapport final / Abgabe des
Schlussberichts:
25.08.2023, 12:00

Expositions / Ausstellungen der Diplomarbeiten:
25.08.2023 — HEI

28.08.2023 — Monthey

31.08.2023 - Visp

Défense orale / Miindliche Verfechtung:
Semaine/Woche 36 (04-07.09.2023)

1 Par sa signature, I'étudiant-e s’engage a respecter strictement la directive DI.1.2.02.07 liée au travail de dipléme.

Durch seine Unterschrift verpflichtet sich der/die Student/in, sich an die Richtlinie DI.1.2.02.07 der Diplomarbeit zu
halten.

Hes so/// s

T Haute Ecole d'Ingénierie
Hochschule fiir Ingenieurwissenschaften

Real-time line crossing detection

Graduate Rithner Aurélien

Objectives
The aim of this bachelor's project is to provide a solution for automatically

detecting, using cameras and in real-time, when a vehicle crosses the lines of a
racetrack markings during the Summer School 1 module.

Methods | Experiences | Results

First, an analysis of the problem's specifications, the different hardware choices
available and the different techniques used in this computer vision field was

made.
Bachelor’s Thesis Then, using Python and OpenCV, a prototype was developed with two major
parts. The back-end assuring image acquisition and processing as well as data
| 2023 | extraction. The front-end is a Django based web server that allows to store

information in a database and display them on a web page.

A mock-up was built to test the system under similar conditions to those of the

actual race.
Degree programme A machine learning based approach was explored as well. It required to generate
Systems Engineering virtual images of the race for the data set used to train the CNN model.

Field of application The prototype achieved timing and crossing detection using traditional methods.

Infotronics The front-end web page allows users to monitor the race information and watch
the best times saved on a scoreboard.

Supervising professor

Prof. Carrino Francesco Data extraction process

Francesco.carrino@hevs.ch
1 2 3 4

Initially, a median frame computes the static image portion (1). Two masks,
generated by the Canny Edge detection algorithm, identify track limits (2).
The following step involves detecting moving objects through background
subtraction (3). Combining these masks highlights off-track areas (4).

A5

-
HES-SO Valais-Wallis « rue de I'Industrie 23 » 1950 Sion (:) (OAR
+41 58 606 85 23 * hei@hevs.ch » www.hevs.ch/hei SW!SSU n!vers!t!es

Jalg
952%

EQUAL-SALARY)
CERTIFIED

Abstract

This report documents a project carried out as part of the "Summer School I" program within
the Industrial Systems curriculum at HES-SO Sion. Over a three-week period, students are
tasked with building remote-controlled vehicles for a race competition.

The objective is to develop a system that can automatically detect when a vehicle crosses
track marking in real-time using cameras.

First, an analysis of the problem's specifications, the different hardware choices available and
the different techniques used in this computer vision field was made.

Then, using Python and OpenCV, a prototype was developed with two major parts. The back
end assuring image acquisition and processing as well as data extraction. The front end is a
Django based web server that allows to store information in a database and display them on
a web page.

Evaluations shows that the prototype achieved timing and crossing detection using traditional
methods, while the front-end web page allows users to monitor the race information and watch
the best times saved on a scoreboard.

A final proof-of-concept was designed and will be put to test at this year's summer school race.
Therefore, a mock-up was built to test the system under similar conditions to those of the
actual race.

Additionally, a machine learning based approach was explored as well. It required to generate
virtual images of the race for the data set used to train the CNN model using Unity and Blender.
With encouraging initial results, this approach was put on the side for time reasons.

Contents

I)1 oo L1 od o] o SO SRPSP USRS 7
11 CoNtext OF the PrOJECT.....cci ettt st nee e 7
1.2 AIMOF NG PIOJECTL ..o e st e et e be e e sbeeteestenre s 7
IR T € To T | SR RSURRSPR 8
14 REPOIT SEFUCKUIE ... n e nr e nneanes 8

P AN g = 1] £ S S RPRP USRS 9
2.1 Problem SPECITICATION.cciiiiieieeeee e 9

Nt R o () <ot A TS« O P TSP PR PR 9
2.1.2 INStAllAtion CONSIFAINTSccviiiiiiie ettt s te st e e e b e e be e s be e s beesbe e beeseesteesraesteesreennas 9
2.1.3 TIME CONSIIAINTS...c.tiiitieieiie et et ete ettt et e e e s e st e e s te e s te et e eaeeetbeebeesbe e beesbeesbesseesbaesbeesbeenteeneeansenteenes 10
2.2 SR OF N AIT ... e s re e 11
2.2.1 Introduction to line CrossiNg AeteCHION.........cueiiiiie i 11
2.2.2 Image acquiSition and Pre-PrOCESSINGcciueiueieeiieereerieeiteareseesteestee e esaesaesreesreesreesseasesssesseenes 11
2.2.3 Edge detection algorithimscccvoiiiiieic e 11
2.2.4 Tracking and ODJECt AELECHIONccieii et sre e te e e eneeeree e 12
2.25 Challenges and lIMITAtIONSc.cccveiieiieiiie e e et sre e sre e aeebeeneeenee e 13
2.2.6 Evaluation Metrics and GAtASELSccueruiiiriiiiiiieieie ettt bbb e b 14
2.2.7 Conclusions and fULUre QIrECLIONS........cuciiiiie ittt st sre e ree e 15
2.3 [= U [0 £ 30 o SRS 16
2.3.1 OPENCV USING PYLNON ..ottt bbbt 16
2.3.2 Setting up the developing eNVIFONMENTcoiiiiiiiie e 16
PG TR B ISt o] (0o -4 o PP PRPP 17
2.3 4 IMALEITAL USBA ... bbbt bbbt bbbt e bbbt ene s 17
2.3.5 LINE DEEECTION ...ttt bbbttt b bbbt b e bt et et et bt beene s 19
R T =T o= T (=1 (=Tt T o PSS 20
R B A O] 1 (o]0 o (<] (=01 T] FO OSSPSR UPR PP URPRURTON 22
2.3.9 BasiC ODJECT traCKING.eeiierietiiteie e 23
2.3.10 Particles filter traCkingcocoiriii e 24
2.3.11 BlOD GBLECHION.vi ittt et et ar et e e st e e be e beeraesteesreesbeennas 25
2.3.12 Camera internal CaliBrationcccooiiiiiiii it 26
2.3.13 Camera external CalibBration............cc.oooiiiiii i 28
2.4 L0 T o USSR 30
N R O 11 (-] £ T- WSO P PR SOUPRP PSPPI 30
2.4.2 FOV & HEIGNL FEIALIONeeceeeceeceece ettt sre e re e sne e ne e 31
2.4.3 ReCaPItUIAtIVE taDIE......c.oe i 32
2.5 D1 0] o -SSR PPPO 33
T8 O =] o] TSP PP PSS UPRP PR PRPRURON 33
2.5.2 Prosand cons Of USING @ AIOMNEccoiriiiieiiiiiie ettt bbb 33
253 OptioNS aVAIIADIEc..oeeie e 34
254 CONCIUSION ...ttt bbbt bttt e b e bbbt e bt e bt e s e e b e besbesbesbeeneas 36
2.6 EVAlUALIONS MELIICS.....oiiiiie ettt ettt e et e e abe e ebe e ebe e 36

K 00 [01=] o1 £ 0] [P ST S OSSR PRPPRO 37
3.1 0 | SRR 37
3.2 1 (0 PSPPSR 37
3.3 RSTT o =1 o] o OSSP S 38

3.4 (21 £ (0] [T 39

K R ! (001 =12 [o OO OO OSSOSO PSPPSR 39
342 BACK N ..o bbbt b ettt 39
3.5 Data BXCRANGE.ciciiici e 40
K T 1 [Tod T | o PSP 41
3.6.1 The NEEd fOr @ MOCK-UPcoueiiiiiitiieiiiteiee sttt b bbb sb e n e 41
3.6.2 Frame and CAMEra SUPPOITc.uiueieirteriettate ettt ettt sttt b ettt sb ettt b et sb et be b e bbbt b st b 41
3.6.3 Exploded view and parts deSCPLIONccviiiieieiieie et sreeneas 42
BB.4 OVEIVIBW oottt sttt b ettt et b ettt be e et be e e bt e bt e b e b e e bt e bt e bt bt e b e e b e b bt ene et 43
BB.5 TS VENICIE ... bbbt 44

T 1 0 1=l o] 0] (0] 1Y oS PP T ST T T PR PR URPPPPPO 45
4.1 L 010 Y/ 0Tl ol0] g To=T o | TSPV RP PR 45
A = - To] =1 o ISR 45
4.2.1 Creating @ MEdIAN fTAMEccuiiiiiie et r et b e sae e e et e eesresresneereenes 46
4.2.2 Defining the TIMItS MASK ..ottt 47
4.2.3 Defining the traCk MASKociiiiiiiiii bbb 49
4.2.4 MoVINg ODJECE HEECTIONo.viviitiiciiitcieee sttt et b et eb e 50
4.2.5 LiNe CroSSiNG GEIECTION ...cveveiiitiieeiiite ettt ettt et b e bttt sr et e ebe e 51
426 RACE TIMING ...ttt et bbbt b bt b s bt eb e nb et eb e bt ebenr et eb e 52
4.2.7 Detecting start & fiNIS TINEcoviiiiiiii e 54
4.2.8 SEALE MACKNINEottt bbbttt b b e b bbb et e b nr et b ebeenes 55
B e (0] 01 =T o OSSPSR 56
e Ot R V{4 oo F T RSO PTUP PP PUPPTRRPPN 56
A o To] (53 od oo o= OSSP 56
4.3.3 WD PAGE ..ttt b bbb bR e E bR b bbbt b nr et bt r e erennas 57
A AT [-To I £ T USSP 57
e T = (V4o - OSSR 57
e T 1ol (< oo T L o OSSP 58
4.3.7 Back-end MOGITICAtIONSc.oieiiieiieieee ettt ettt e eneens 59
4.3.8 TWO WAy COMMUNICALION.cuiiieiieieesteesteesteete st esteeste e e e e e see s e e s raesteesteesaeenseensesssesseesseesreessenseens 59
4.4 T | £SO 60
5 FiNal proof OF CONCEPLcviiie e neesne e e 61
5.1 [30 [0 | SRS 61
5.2 ConcCept & iNSTAIIALIONciuiiieiiiiiie e re e 61
5.3 Principal differences with the Prototype........c.ccoeoeiiiiiiiie e 61
5.3.1 DiIfferent WED PAGES ..o veieiteiieteite ettt bbbttt bbbt 61
5.3.2 WED PAGE CONIOL ..o bbbt bbbt b 61
5.3.3 Tracking of the VENICIE ..o 61
oI S I 40 U [0 OSSOSO 62
55 Testing phase and FeSUILScooeiiiiiiii e 62
6 MaChINE LEAINING ...eoiiiiie sttt b ettt 63
6.1 (O] 0] (=) S SURSPROPROT 63
6.2 DAtaSEt CrEATION.eivieiiieiie ettt et s ae s e tesseesaesteeneesteeseetenneas 63
6.2.1 Setting up the virtual ENVIrONMENT iN UNILY ...oovviveeeice e eneas 63
6.2.2 Random placing Of the CAIcvcieieiee et srenre e eneas 63
6.2.3 Automatic image ClassifiCatiON..........cccccviiriiiiiiieieeee e 63
6.2.4 ConveX MESH ChAIIBNQEoouiiiie bbb 64
TR B N o T- I €= V1 V1o T SRR 66
LT 5 € To o | = TSRV SR UPR PSRRI 66

(SR Y/ (o To (=] B T o] 011 (1ot 10RO 66

LTS O B | (<1 -1 [0 0SSOSRV SOUPRU U URURURN 67

8.4 RESUITS ..ttt b ettt e 68
B.4.1 LEAIMING CUIVES. .. et ciieieie i ste st steeee e et e st e te s teete et e see st e besbeeteaseessesse e e besaeabeaseaneeseenseteseestenseaneas 68
B.4.2 EVAIUGLIONSeoviiiiieiecie sttt et ettt b et b e et re e 69
6.4.3 Conclusion on using machine learning in this ProjECtcccocivviveieieinie i 70

A V7 1 [- 11 o] OSSR 71
T L GOAIS & FESUITS ...t bbbttt ne e 71
7.2 TaSKS & PlANNING ..o 72

ST LU T =1 o1) OSSR 74
8.1 8 oo 11 o4 1 T o SRR 74
8.2 0T 007 7= 11 o] o SR 74
ST B w11 g Lot =0 (U T OSSPSR 74
I A O o Tod [1] o o OSSOSO PO 74

ST Oo] o o [115 T o I OSSR 75
10 RETEIENCES ..ovieieeee ettt bbbt et 76
L1 APPENAICES. ..ottt b bbbt e ettt bbb 77
11,1 Project SPECITICAtIONScoiiiiiicicc ettt be e re e 77
A U T g [01 =T = V- PP US 80
11.2.1 (@04]0] 1= 3o 11 1 o1 | S STP 80
11.2.2 Console & OPENCV WINUOW.........ccueiiiiiiiiiieiiiie ettt sb e ne s 80
11.2.3 OPENCY WINAOW ONIY ...ttt bbbt b et b et 80
1124 GraPRICAL Ul ... bbb e bbb 80
11.25 Front end for display & back end fOr iINPULccooiiiriiinee e 80
11.2.6 Front end for display + input & back end for processingcccoeevereriienensienenee e, 81

11.3 RACE trACK AFAWINGSccvviiiiiieie ettt sttt st te e s be e be s e e saesbeeneesbesbaebesbeennenreans 82
11.4 Cameras SPECITICATIONScoiiiiriiiieieiei et 83
11.5 Cameras placement height eStimations...........ccocviiriiiiniiiii s 88
11.6 Particles filter Tracking tESTS........ccciiiiiii it 90
117 MOCK-UP PArtS AELAIISc.eiiiiiieieeee s 93
11.71 WWOOAEN FFAIMIE ...ttt bbbttt e bbbt bt bt et e e e e et sbe b et 93
11.7.2 L LA T0 |1 ST 93
11.7.3 B S .ttt b bbb e b et b e e be e be e b e e nbe e nes 93
11.7.4 POLE. e be et eear e b e e be e be e be et ae e aaeeareenas 94
11.75 TUDE-POIE CONNECLON ...ttt ettt bttt b ettt ebe e 95
11.7.6 BT GO vttt b bbb bbbt e 95

Figures

Figure 1:

Picture of the 2022 SS1 ACE [L]....uuuuuuuuunrrunniniiiiiiiiiiriieiiiesieibenererenneeeeeneeeeneeeeneennee 7

Figure 2: Previous vehicles built in 2020 [3]covvviiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeee e 9

Figure 3 :

(070 gTel=T o1 a o) I 01\ | NN I 1 [P 13

Figure 4: Confusion matriX desCription [6]coeieeeiiiiieiiiiii e e e e e e e aaaees 14

Figure 5:
Figure 6 :
Figure 7 :
Figure 8 :
Figure 9 :
Figure 10
Figure 11

Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31.:
Figure 32:
Figure 33:

Figure 34
Figure 35

Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41.:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:

Figure 47
Figure 48
Figure 49

Figure 50:
Figure 51:
Figure 52:

PYChHArm's [0g0 [L0]uuuuuuuuuiuiniiiiiiiiiiiieieseieiseiesesesseebeeee e nnnnnnnnes 16
Premiére image de 1ESt.......ovviiiiie e 19
Sobel edge detection on thread test IMagevveeiiiieiiiiiiiiiice e, 20
Canny edge detection on thread teSt IMagecoooveveeeeieeeeee e 20

Canny edge detection on the circuit's virtual image with better parameters......... 21
: Contours detection after Canny edge detection...............ccoovvvviiiiiiiieeeeeceeiiinnnn, 22
: Particles filter traCcking tESTuuuiiiiiiiiiiiiiii e 24
Setup of a blob detector in OPENCV ... 25
Calibration plate with detected chessboardccccooooiiiiiiiiiii e, 26
YAML file containing calibration parameters...........cccooeuviiiiiiieeeiieeviciiee e, 26
Test image before internal calibration..................vviiiiiiiiiiiis 27
Test image after internal calibration..................iiiii e, 27
Perspective transformation eXample ..o 28
WaArPEA IMAGE ...ttt 29
Result image with perspective correction applied...........cccvvvveeiiiieiieeeeecen, 29
Extract from Intel D415's datasheet..........ccooooeiiiooiiieeeee 31
Intel D415 placement for full traCk VIEWueuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiieees 31
Representation of the difference in P.O.V between a camera and drone setup.. 33
TR =Y | (o TN B (o T U= 1 RO 34
Parrot Anafi Al DIONE [15] .oouuiuiiiiii it e e e e aa s 35
OpenCV drone diagram [16]ccooeeeiieeieeeeeeeee e 35
Evaluation metrics defined for thisS project ..., 36
Decomposition in SUD-tasKSoooiiiiiiic s 37
Actors and their reSPECHIVE taSKS.........uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiee i 37
Actors and main system components interactionsS.............cccvvvevvvvciinieeeeeeeeiiennnnn. 38
Minimalistic components arChiteCIUre.........cccoeeeiiiiiiiiiiiie e 38
Sub-task repartition with blue for back-end and green for front-end 39
Content of the webpage with the nice-to-have ones ingreen..........cccccccceeeeenn... 39
Representation of the data exchanged between the front and back end 40
: Printed board With raCetraCk..............uuuuueiuuuiiiiiiiiiiiiiiiiiiiiiiiiiieieiieieeeeeeeeeeeeeeeenee 41
2 Virtual overview Of the MOCK-UPuuuiuiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeees 43
Overview of the mock-up built ..., 43
R3] | WY 1TV O TR 44
Activity diagram for the back endeeuiiiiiiiiiiiiiiiie 45
compute_median_frame fUNCHIONcooiiiiiiiiii e 46
Process to create Mmasks — Part L.......ccooooooioiiiioiieeeeeeeeee e 47
Process to create masks - Part 2cooooiioiiiiiieeeeeee 47
Binarization values adjustments WINAOWcccooiiiieiiiieieeeee e 47
Example of a bad values for binarization............ccccccoeeeei i, 48
JSON file With SAVEd VAIUESuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeenennene 48
Segmentation of the test track............ccoo 49
Segmentation of the actual track ..., 49
: Detection of moving objects, the two cars inthis case..........cccccceiiiiiiiiiiieiiinnnnnn. 50
: Limits crossing highlighted in reduuuiiiiiiiiiiiie 51
: Time indication displayed in top left and.................ueeiiiiiiiiiiiiiiiiis 52
Timekeeper class UML diagram.........ooooiiiiiiiiieieee e 53
Finish line marked with ArUcO markers ... 54
RaceMgmt’s class UML diagramccooooeoiiiiiiiiieeee e 55

Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61.:
Figure 62:
Figure 63:
Figure 64:
Figure 65:

RaceMgmt’s state machine UML diagramccooooiiiiiiiiiieeeeeeeeeeeeeeeeen 55
Prototype web page displaying race data...........cccccceiiiieeevieeiiiie e, 57
Database arChiteCIUIEccoooieeieeeee e 58
Extract from the AP] COUEuuuiiii e 58
Flask implementation in the back end ..., 59
Result frame with the crossings detectedoouiiiiiiiieiiiiiicc e, 60
Inside and outside image generated.................uuuuuuurimimimiinieiiiiiiiieeeeee 63
Convex VS Complex Mesh colliders [17].....ccoooerriiiiiiieeeee e 64
The "outside zone" object decomposed in Blender.............ccooovviieiiiiieiniiiiiiinnnnn. 65
Colliders highlighted in UNity ... 65
Model architecture definition USING KErasccooviiiieieeeeeeeeeeeeeeeeeeeeeeee e 66
(@011 401 PA=T 1= 111 oV 67
TaTLiT= U o] F=V T 11 oo [P 72

Figure 66: ACtUAI PIANNING ...oviiiiiiiiiiiiiiiiiiee ettt 73
Figure 67: Technical specifications for the Intel D145cooovviiiiiiiiiiiiiiiiieeeeeee 83
Figure 68: Page 1 of the technical specifications for the RPIWWCAMccccceeevieeennnninnn, 84
Figure 69: Page 2 of the technical specifications for the RPIWWCAMcccceeevieeeiniinnnn, 85
Figure 70: Technical specifications for the AXiS M2025-LEccovvviiiiiiiiiiiiiiiiiiiiiiiiiieee 86
Figure 71: Technical specifications for the DLink DCS-8627LHcc..coooviiiiiiiiinieeeeceiins 87
Figure 72 : Height estimation for the Intel D415iiiiii i 88
Figure 73 : Height estimation for the RPI WWCAMcooviiiiiiiiiiiiiiiiiiiiiieiieiieeeeeeeeeeeeeeee 88
Figure 74 : Height estimation for the DLINK DCS-8627LHccoovviiiiiiiiiiiiiiiiiiiiiiiiiieeee 89
Figure 75 : At first particles are distributed everywhere randomly............cccccvviiiienieeeeceennnn, 90
Figure 76 : Quickly they focus on the green object. In this example there are two identic cars
and with the parameters used they followed only 0Ne ..., 90
Figure 77 : With this algorithm the tracking continues after the bridge..........ccccccceeeieiiiiinnn, 91
Figure 78 : During the 180 degree turn some of the particles drift away but the tracking
o] 11T 10T PP 91
Figure 79 : Tracking all the way until the €nd ... e 92
Figure 80 : 3D VieW Of the framecoo oo 93
Figure 81 : 3D view Of @ haNdIe...........coooviiiiiiiiiiiiiiiiiiiee e 93
Figure 82 : 3D exploded view of the base parts..........cccccvvvviiiiiiiiiiiiiiiiieee 94
Figure 83 : 3D VIEW Of the POIE......uuei e e e aaaens 94
Figure 84 : 3D view of the pole-tube CONNECIONcovviiiiiiiiiiiiiiiiiiiiiieeeeee 95
Figure 85 : 3D View Of the €N CAP.....cevviiiiiiiiiiiiiiiiiiieieeeeeeeeeee ettt 95

1 INTRODUCTION

1.1 CONTEXT OF THE PROJECT

As part of the "Summer School I" of the Industrial Systems cursus at HES-SO Sion, students
have three weeks to build a small remote-controlled vehicle. At the end of the project, the
different teams compete in a race. The circuit is marked out on the ground using a wire and
includes turns and a bridge. Each run will be timed, and the fastest team will win. Time
penalties are applied if a vehicle crosses the boundaries of the circuit during a run.

]

i

A} l‘
il iy g

Figure 1 : Picture of the 2022 SS1 race [1]

1.2 AIM OF THE PROJECT

The aim of this bachelor’s project is to provide a solution for automatically detecting, using
cameras and in real-time, when a vehicle crosses the lines of the track markings. This project
will also examine the possibilities and constraints of using a low-cost drone instead of a fixed
camera.

Nowadays computer vision is an increasingly studied subject.

“..., the research in the field of computer vision purports to develop
machines that can automate tasks that require visual cognition. However,
the process of deciphering images, due to the significantly greater amount
of multi-dimensional data that needs analysis, is much more complex than

understanding other forms of binary information.” [2]

This thesis will give an overview of the available strategies in computer vision from basic
techniques to the more advanced ones and experiments which one works the best for this
application.

1.3 GOALS

As the end of this thesis work coincides with the summer school’s race, the system will be
tested at this year’s event. The project will then not only be focused on lines crossing detection
but will cover everything related to hardware installation, user interface and user experience
as well to ensure it can be tested live during the actual race.

According to the specifications defined at the start and available in the appendix, here are the
different objectives of this project.

» Analysis: Establish the state of the art in algorithms for detecting overruns.

> Implementation: Design and implement a Proof-Of-Concept with fixed cameras.
» Evaluation: Evaluate the system's performance

» Optional: Analysis-Realisation-Evaluation with a drone

1.4 REPORT STRUCTURE

In the upcoming sections of this report, the different phases of this project will be dissected
and presented in their order of execution. Except for the analysis part, each section follows a
similar format to allow a comprehensive coverage of this project.

1. Introduction
To assert their purpose, this part provides context about the section, an overview of
what can be find in it as well as the metrics to evaluate the results.
2. Conceptualization
It provides an explanation of the ideation process, the tools available, etc.
3. Applied Efforts
It shows the conducted experiments and concrete work produced.
4. Results and Forward Trajectory
The outcomes will be presented along the potential for future improvements.

In particular, Section 2 is the analysis part that discusses the problem specifications,
presents a state-of-the-art, it shows the test made during the Python/OpenCV hands-on and
also presents the different choices in camera and drones.

Section 3 presents the global system conception with architectures diagram, prototype
definition and it also shows how a mock-up was built to test the system.

Section 4 discusses the prototype and the work achieved on its back and front-end part.
Section 5 presents the final proof-of-concept with its use during this year summer school
race.

Section 6 explain the tests made to train a machine learning model.

Section 7 presents and discusses the results of this project.

Section 8 concludes this report and discusses future improvements.

2 ANALYSIS

2.1 PROBLEM SPECIFICATION

After discussing with the professors related to this project, Prof. Francois Corthay referred as
the “client” who had the idea of this project and Prof. Gabriel Paciotti who is the manager of
the Summer School 1, here is the information gathered:

2.1.1 PROJECT’S NEEDS

On the operator side, except for a technically working system, a basic and easy to use
interface and installation is needed. The actions required to run the program should be minimal
and straightforward.

The public and competitors should be able to watch the information displayed live during the
race. The information will contain things such as timing of the progressing run, number of
penalties detected and total time at least. Ideally, the position of the cars and the position of
the crossed limits will be displayed on a map too.

And the end of a run, the interface must provide a way to manually correct the number of
penalties in case of a misdetection. The time will then be registered and added to a
scoreboard.

2.1.2 INSTALLATION CONSTRAINTS

The race will take place at the HESSO Valais-Wallis Sion, in the library. A way must be found
to place and fix the camera(s) above the track. The ceiling is made of concrete, and it won’t
be possible to fix anything directly on it as there are lights and sound reduction panel hanging
under it. The cameras can’t be placed above the lights to avoid obstructing the field of view.
A mobile lift platform can’t be used to avoid damaging the floor. There are large concrete
columns where something like straps could be attached (see Figure 1).

The goal is to keep the maximum freedom in the cars design but modifications of the track
such as changing the material used to define the limits are possible.

Figure 2: Previous vehicles built in 2020 [3]

2.1.3 TIME CONSTRAINTS

The goal is to test a proof-of-concept (POC) during this year’s summer school. The race will
happen on September 8™.

The installation of the system will only be possible a few days before the race. Due to the
event happening in the library, no tests will be possible earlier than this.

10

2.2 STATE OF THE ART

2.2.1 INTRODUCTION TO LINE CROSSING DETECTION

Nowadays, line crossing detection has become a pivotal topic in computer vision applications
due to its wide range of practical implementations, ranging from security systems to self-
driving cars. While utilizing out-of-the-box algorithms for line detection is relatively
straightforward with current technologies, the primary challenge lies in developing a robust
and reliable system that can withstand environmental variations.

This project necessitates the use of both line detection and tracking methods. This section will
provide an overview of the different techniques currently employed in line detection and
tracking.

2.2.2 IMAGE ACQUISITION AND PRE-PROCESSING

To detect lines or track an object on an image, first the image needs to be acquired. There is
a wide range of cameras that can be used to capture footage.

Some of these camera’s specifications will impact the results such as the field-of-view (FOV),
resolution, framerate, etc.

Cameras are not perfect, internal calibration is needed to correct deformation caused by the
lens. Then external calibration is used to correct positioning.

If the application requires to acquire live video frame it means a video stream is used. Live
streaming protocols are vulnerable to the network quality. Since protocols prioritize framerate
over image quality, it can lead to altered image being received when the network speed in not
good.

Once an image or a video frame is acquired, pre-processing is applied to increase the quality
of the result.

2.2.3 EDGE DETECTION ALGORITHMS

Edge detection is a fundamental process in image processing. Its goal is to identify boundaries
and transitions between different regions in an image. An edge in an image is represented as
significant shift in intensity or colour between adjacent pixels. The primary goal of edge
detection is to highlight these boundaries, making them more distinct and facilitating
subsequent analysis and feature extraction.

a) SOBEL EDGE DETECTION
Sobel Edge Detection is one of the most used algorithms for edge detection. It consists of
spotting sudden changes in pixel intensity.
It will sweep the image in both x and y axis and detects the changes of intensity and computes
the gradient. Then it will combine both axis and compute the gradient’s magnitude and angle.

Edges can be extracted by applying a threshold to the gradient magnitude. [4]

b) CANNY EDGE DETECTION

This one is certainly the most popular as it is very robust and flexible. It's a four-step process:
Noise Reduction

Intensity Gradient of the image

Suppression of false edges

Hysteresis Thresholding

This method uses Sobel Edge detection to compute the intensity gradient, but it is composed
of several other steps that enable it to produce precise and well-connected edges. [4]

11

2.2.4 TRACKING AND OBJECT DETECTION

Object tracking in computer vision involves following and monitoring the movement of objects
within a sequence of images or videos. The primary goal of object tracking is to maintain
continuous identification of a specific object's location and trajectory as it navigates through
frames.

There are a lot of techniques used to detect and/or track an object in an image. Here are a
few of them listed.

a) TEMPLATE MATCHING

This method consists of having a reference image of an object and to search for it in another
image by comparing pixels.

Pros: Efficient
Cons: Subject to changes in rotation, scale, lightning conditions

b) CONTOUR DETECTION

This method consists of analysing the contours of an object and searching for a similar contour
in another image. Contours can be defined by identifying the boundaries of an object using a
method like Canny Edge Detection.

Pros: Efficient
Cons: Not great with objects that are complexly shaped or without clear contour

c) OPTICAL FLOW
This method consists of estimating the motion vectors of pixels between a series of frames.

Pros: Can be used for detection and tracking of object over time
Cons: Subject to occlusions, fast motion, complex scenes

d) MACHINE LEARNING APPROACHES
There are different types of neural network used in machine learning.

e Multi-Layer Perceptron (MLP)
e Convolutional Neural Networks (CNN)
e Recurrent Neural Networks (RNN)

The most common type used in computer vision is CNN.

12

Convolutional Neural Network

TF—»catoz
e y .,"/ (3—>» Dog: 0.1
i g (33— Tiger: 0.02

convolution pooling fully-connected
_— —>

Figure 3 : Concept of CNN [5]

Main applications for CNN are image classification, object detection.

A convolutional layer applies filters to input data, extracting specific features and patterns by
convolving the filters across the data. This process enables the network to detect edges,
textures, and other significant characteristics in the input, contributing to the network's ability
to recognize complex patterns and objects.

Pros: More robust and resistant to environmental changes
Cons: Requires loads of data and processing power to train a model

A more detailed and concrete machine learning application can be found in the section 6 -
Machine Learning.

2.2.5 CHALLENGES AND LIMITATIONS

Despite the great advancements achieved in this field over the past years, several challenges
ant limitations persist.

While the simpler approaches are easy to use “out-of-the-box” and can work great on
simulation cases they tend to struggle to function properly in the real word. Most of these are
not reliable enough when subject to varying light conditions, shadows, occlusions, image
noise, etc. That's why the more complex techniques using machine learning are great as they
can handle these external changes far better. But their limitations come from the size of the
data needed and the processing power needed to train the models.

The same applies when it comes to the adaptability of the algorithms to diverse object shapes,
sizes, and orientations. While some techniques excel in detecting simple shapes, they might
struggle when confronted with irregular or complex objects, demanding more sophisticated
approaches for robust detection and tracking.

13

2.2.6 EVALUATION METRICS AND DATASETS

The evaluation of line crossing detection and tracking algorithms necessitates the utilization
of appropriate metrics and datasets. Common evaluation metrics for binary classification
similar to this application includes accuracy, precision, recall, F1-score.

Predicted condition

Total population

Positive (PP Negative (PN

Con (PP) gative (PN)
. False negative (FN),

g » True positive (TP), .
= Positive (P) hit type Il error, miss,
E underestimation
e
g False positive (FF), i
o) True negative (TN),
o MNegative (N) type | error, false alarm,

L correct rejection
overestimation

Figure 4: Confusion matrix description [6]

These metrics are based on the confusion matrix, here are their equations [6].

TP+TN

accuracy = P+—N

TP

TPR = ———
recall or TP T FN

isi PPV = ———
precision or TP + FP

PPV * TPR

Fscore = 2% by ¥ TPR

“Accuracy is defined as simply as the number of correctly categorized examples divided by
the total number of examples. [...] The accuracy has the advantage that it is very easily
interpretable, but the disadvantage that it is not robust when the data is unevenly distributed,
or where there is a higher cost associated with a particular type of error.” [7]

On the other hand, F1 score is a combination of precision and recall and provides a balanced
measure of the accuracy, particularly in situations where there is an uneven distribution of
classes or imbalanced datasets.

Concerning machine learning, the models training is often evaluated using learning curves or
ROC curve. These metrics provide quantitative measures of the algorithm performance,
enabling objective comparisons between the different methods. The results produced by a
model are evaluated with the same metrics presented above.

14

2.2.7 CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, exploring the different line crossing detection and tracking techniques reveals
and dynamic landscape of algorithms and technologies.

Going from traditional methods using simple math functions to the highly complex model
pretrained, there is a lot of ground to cover. But as always, each method comes with its set of
advantages and limitations. And it is rare to find an existing technique that perfectly suits a
specific application. It may be either specific to a project but hardly adaptable or easily
modifiable but too generic, demanding significant effort to adapt it.

The goal of this project will be to test a selection of these techniques and choose one or
multiple ones to be further developed and adapted to the specific needs of this system.

15

2.3 HANDS ON

2.3.1 OPENCV USING PYTHON
If you ask a developer what comes to his mind when image processing is mentioned, he will
probably say OpenCV.

OpenCV (Open-Source Computer Vision) was initially developed by Intel and is a free cross-
platform computer vision library for real-time image processing. [8]

“The OpenCV software has become a de-facto standard tool for all things
related to Computer Vision.” [8]

Its first release was at the beginning of the 2000s and even nowadays this library is still highly
popular with about 29’000 downloads per week.

“The goal of OpenCV is to provide an easy-to-use computer vision
infrastructure that helps people build sophisticated vision applications
quickly by providing over 500 functions that span many areas in vision.” [8]

It is written in C and C++ and compatible with most popular operating systems.

A fun fact about OpenCV: it even has been used in sound and music recognition where visual
recognition techniques have been applied to sound spectrograms images. [8]

The primary interface for OpenCV is C++ [9], but interfaces have been created so it can be
easily used with Python, Java and even MATLAB.

Since most examples and samples projects found online are coded in Python it was decided
to use it.

The goal of this hands-on is to discover the variety of functions offered by OpenCV and to
learn using it as well as familiarizing with the Python environment.

2.3.2 SETTING UP THE DEVELOPING ENVIRONMENT

JetBrains’s PyCharm IDE is specifically designed for Python programming. It was the IDE
used for this project as it offers a lot of tools that boosts productivity such as code completion,
syntax highlighting, intelligent code analysis and refactoring. It also supports plugins like
GitHub Co-pilot and has built-in version control systems.

PyCharm

Figure 5 : PyCharm's logo [10]

One of the most practical features is the support of virtual environment. It enables each project
to have its own packages and dependencies installed without affecting the global Python
environment of the PC. It makes it easy to browse through the different package’s version and
install the one needed.

Version control has been used to save snapshots of the code during the different phases.

16

An online repository is available on Gitlab, it also contains more information about the project’s
setup in the Read.me file:

https://qgitlab.hevs.ch/SPL/bachelorthesis/2023-relicrode/opencv intro

2.3.3 TEST PROGRAM

The methods mentioned in the state-of-the-art section will be tried out using Python scripts
and the OpenCV library. These tests won't have a simple "pass" or "fail" result, but they will
help in deciding which technique to use in the prototypes.

It must be noted that the following tests are not exhaustive. The results could be improved by
applying pre- or post-processing such as contrast or luminosity modifications or by further
tweaking some of the parameters.

2.3.4 MATERIAL USED

Testing image processing functions obviously requires some images. While the exact setup
of the race was not possible to reproduce, here’s the attempts to approach it that were made.

a) STILL IMAGE FROM LAST YEAR’S RACE

This image is a screenshot extracted from a video shot during last year’s training.

It shows the exact floor that will be present this year too, has some challenging lighting
conditions because of the window’s shadows and enables to test the detection of this
light-yellow thread used to mark track limits. But it is not exactly a top-down view and
is taken too close from the ground.

17

https://gitlab.hevs.ch/SPL/bachelorthesis/2023-relicrode/opencv_intro

b)

SIMPLE THREAD ON THE FLOOR

This shot tries to better recreate the angle and height of the camera. Even if it is not
the exact floor of the library it gets close enough. The thread is simply laid on the floor
with some curves and straight lines.

VIRTUAL TOP-DOWN VIEW OF THE TRACK

Using the track drawings and measurements this image was created. The floor was
made by stitching multiple times a picture of the library floor.

This image solves a lot of the precedent picture’s problems. But its downside is the fact
that it is virtual and does not reflect a camera’s noise and imperfections. It could be
solved by virtually adding noise but wasn’t necessary at this point. The thread’s size is
also a bit bigger than in real size.

18

d) VIRTUAL RACE ANIMATION

Later, a race animation was made. It shows a car on the left perfectly following the
track. But on the right side, the car crosses the limits a few times.

2.3.5 LINE DETECTION

As the title of this thesis suggests, the first method that was tested was the line detection
algorithm that uses Hough Transform. But this algorithm detects geometrical lines not lines in
the sense of lanes. Therefore, it's hard to extract useful data in our case since the track is
principally made of curves.

The function used is cv.HoughLines and it is described in the official OpenCV documentation.
[11]

Figure 6 : Premiere image de test

This function is applied on a binarized image, and it showed the difficulty to select a good
threshold value. It was hard to isolate the thread only.

19

2.3.6 EDGE DETECTION

Now let’s try to detect edges and contours instead of straight lines only.

First using the Sobel Edge Detection algorithm:

Figure 7 : Sobel edge detection on thread test image

Now using the Canny Edge detection:

Figure 8 : Canny edge detection on thread test image

20

Figure 9 : Canny edge detection on the circuit's virtual image with better parameters

As seen in the state-of-the-art part, the Canny edge detection uses Sobel edge detection but
adds pre- and post-processing steps, giving much cleaner results as shown with those tests.
This method suits this application a lot better than the line detection one.

21

2.3.7 CONTOUR DETECTION

Let’s try applying contours detection on the detected edges.

The edge detection functions gives as a result another image with edges highlighted. Whereas
the goal of the contour detection function is to classify those edges.

The function cv.findContours returns a binary image, an array with the detected contours
represented as a vector of points and an array with each contour’s hierarchy.

Hierarchy is represented by an array of four values: [Next, Previous, First_Child, Parent]
Next: denotes next contour at the same hierarchical level.

Previous: denotes previous contour at the same hierarchical level.

First_Child: denotes its first child contour.

Parent: denotes index of its parent contour.

This hierarchy classification will be used later in the project.

OpenCV also provides a very handful function that allows to draw the detected contours
called cv.drawContours. The results can be seen on the next image.

Figure 10 : Contours detection after Canny edge detection

22

2.3.9

BASIC OBJECT TRACKING

OpenCv provides an object tracker, and you can choose between different algorithms.

More details on these algorithms can be found online but here is a list with their pros and cons
found on the LearnOpenCV website [12].

e)

f)

g9)

h)

)

k)

BOOSTING TRACKER

Pros: None. This algorithm is a decade old and works ok, but other advanced trackers
(MIL, KCF) based on similar principles are available.

Cons: Tracking performance is mediocre. It does not reliably know when tracking has
failed.

MIL TRACKER

Pros: Performance is pretty good. It does not drift as much as the BOOSTING tracker
and handles partial occlusion.
Cons: Tracking failure is not reported reliably. Does not recover from full occlusion.

KCF TRACKER

Pros: Accuracy and speed are both better than MIL. Reports tracking failure better than
BOOSTING and MIL.
Cons: Does not recover from full occlusion.

TLD TRACKER (TRACKING, LEARNING, AND DETECTION)

Pros: Works best under occlusion over multiple frames. Tracks well over scale
changes.
Cons: Lots of false positives making it almost unusable.

MEDIANFLOW TRACKER

Pros: Excellent tracking failure reporting. Works well when motion is predictable and
there is no occlusion.
Cons: Fails under large motion.

GOTURN TRACKER

Pros: Robust to viewpoint changes, lighting changes, and deformations. Operates
based on Convolutional Neural Network (CNN).
Cons: Does not handle occlusion well. Requires the presence of Caffe model files.

MOSSE TRACKER

Pros: Robust to lighting, scale, pose, and non-rigid deformations. Fast operation at a
higher fps. Easy to implement.
Cons: Lags behind deep learning-based trackers in performance.

CSRT TRACKER (DISCRIMINATIVE CORRELATION FILTER WITH CHANNEL AND SPATIAL RELIABILITY)

Pros: Adjusts filter support for non-rectangular regions or objects. Higher accuracy for
object tracking.
Cons: Operates at a lower fps.

They have been tested with the virtual animation described earlier.

Some of them are deprecated, and only a few worked in this case. But none of them could
track the car when it drove under the bridge. While some detect the failure, others don’t and
just keep tracking the same spot at the entry of the bridge.

23

2.3.10 PARTICLES FILTER TRACKING

The goal with a particle filter is to have a large amount of small independent particles under
some basic physic rules. Each particle will be tested and evaluated. For object tracking, they
will be tested on their absolute position over the tracked object. Based on these tests different
weights will be assigned. The good particles will be multiplied, and the bad ones removed.
The cycle will repeat for each frame of the footage.

A test script was written following this online project [13].

The result depends greatly on the parameters of the particles such as the reward for being at
the right place or the noise amplitude applied to them. After a bit of tweaking the particles
tracked the green car on the right all the way even under the bridge or during the 180° turn.
More screenshots of the tests can be found in the appendices.

Figure 11 : Particles filter tracking test

24

2.3.11 BLOB DETECTION

OpenCV offers a feature called blob detection. Its purpose is to locate the areas of an image
that share common the same properties such as colour or intensity.

There are a lot of detection parameters that can be set to configure the detected objects
requirements such a minimum or maximum area, a specific colour, convexity, etc.

481 ¥ Set up blob detecte

482 st_params.filterByArea =

483 sf_params.minArea = 300

484 sf_params.maxArea = 40000

483 sf_params.filterByCircularity =

486 sf_params.filterByConvexity =

487 sf_params.filterByInertia =

488 sf_params.filterByColor =

489

490 sf_detector = cv2.SimpleBlobDetector_create(sf_params)

Figure 12: Setup of a blob detector in OpenCV

It could be used to detect a specific object like the car, but the tests were not convincing. But
it can be very useful to count or sort some objects.

25

2.3.12 CAMERA INTERNAL CALIBRATION

Most cameras are exposed to lens distortion. For everyday photography it can easily be
overlooked but in computer vision it can affect the system performance.

Since it is a common problem, it has already been studied and well documented in the
OpenCV documentation.

“Radial distortion causes straight lines to appear curved. Radial distortion becomes larger the
farther points are from the center of the image. [...] Similarly, tangential distortion occurs
because the image-taking lens is not aligned perfectly parallel to the imaging plane. So, some

areas in the image may look nearer than expected.” [13]

Figure 13: Calibration plate with detected chessboard

To calibrate the camera, a set of images with a calibration plate in the frame must be collected.
Then the script will detect the chessboards and collect the points heeded to calculate a matrix.

|=] calibration_parameters yaml E3 l

EYAML:1.0

Eﬂcamera_matrix: "opencv-matrix
: TOWS :
5 cols:
5 dt: d

1.1

7 Eé data: [4.0669174758726713=+03, 0., 1.0020489642372941=+03, 0.,
B 4.022032130687T6781e+03, 5.2900065367154355e+02, 0., 0.

2 Eﬂdistortion_poeffs: !lopencv-matrix

10 TOWS:

11 cols:

12 dt: d

1 Eﬂ data: [-5.9274325647111406e+00, 3.25002T79968850585e+01,

14 3.5711995218154872e-02, -4.2857953188469980e-02,

15 -5.6378956069680264e+01]

Figure 14: YAML file containing calibration parameters

This matrix and distortion coefficients are saved in a YAML file and can then be reused for

any picture taken with the same camera.

26

Here is the before and after comparison:

Figure 16: Test image after internal calibration

The difference before and after for this image is clear as this test's camera has a lot of
distortion due to its wide field-of-view. The borders of the image are still distorted but its
center is much straighter.

27

2.3.13 CAMERA EXTERNAL CALIBRATION
Now that the lens distortion problems are fixed, it is time to address the external calibration.
This will correct the perspective deformation in case of the camera not pointing straight down.

The concept is to have both a reference and the deformed image, to select four points and get
their respective coordinates on both images.

Figure 17: Perspective transformation example

The cv2.getPerspectiveTransform function will then compute a 3x3 matrix for the perspective
transform. The matrix can then be used with the cv2.warpPerspective function to correct an
image.

To collect coordinates on both reference and the image to correct, the plan is to use ArUco
markers (a simplified version of QR codes). These are distinctive black-and-white square
patterns commonly used in computer vision. Each marker can have its own ID.

To test this idea, four markers were added in the corner of the racetrack and a warped image

was created. On the image below you can see more than four markers, but the script will only
use four.

28

Figure 18: Warped image

Figure 19: Result image with perspective correction applied

The results are good. This process can be done once and then the matrix can be reused while
the camera position is not changed.

29

2.4 CAMERA

In this digital age, the choice of camera available is massive but not all will suit this project’s

needs.

For the initial tests an Intel Real Sense Depth Camera D415 was used. This camera provides
3D scanning features, but they were not used. It served as a point of reference for the future

search.

If no camera with the right specifications is found there is the possibility to install two of them
to cover all the track but that would require substantial additional work to make them work
together.

241

CRITERIA

Here are the search criteria used.

a)

b)

c)

d)

e)

FIELD OF VIEW (FOV):

Some manufacturers only share one value for FOV, and it corresponds to the diagonal
FOV which is harder to work with as it depends on image format. But in most
datasheets both horizontal and vertical view angle are shared. Those values are
needed to make sure all the track area can be covered in the frame. There is a direct
relation between the camera’s elevation above the ground and the area in the FOV.
The higher the FOV values are, the lower the camera needs to be placed, but with
higher FOV comes higher lens distortion.

Lens distortion can be fixed in software so the limiting factor will be the maximum height
placement. Therefore, the goal is to find a camera with a relatively high FOV.
HEIGHT PLACEMENT

As explained in the previous part there is a corresponding height placement for each
FOV value. This height can’t be greater than the library setup allows. Anything above
six meters will not work.

The next section explains briefly how the FOV/Height relation was computed.

CONNECTIVITY

There are multiples ways to retrieve the live data from a camera. The most common
would be to have it directly connected to the PC via USB. But that would not be practical
as it would require a long cable which will decrease the video resolution. Another
solution would be via any streaming protocols over internet either via Wi-Fi or ethernet
cable.

POWER SUPPLY

A battery powered device would mean less cables to route up in the air above the track
but would be less practical if it needs to be charged too frequently.

RESOLUTION

Nowadays most cameras sold on the market provides a decent resolution, but the
camera should at least record in Full HD. We can then reduce the quality or frame per
second if needed.

30

2.4.2 FOV & HEIGHT RELATION

Using Onshape (more details on this website in the Section 0 - Mock-up) to draw in 3D the
whole installation allows to then make drawings in 2D and measure the angles.

Let’s take the Intel D415 as an example.

RGB frame resolution: RGB sensor FOV (H x V):
1920 = 1080 69° x 42°

RGB frame rate: RGB sensor resolution:
30fps 2 MP

RGB sensor technology:
Rolling Shutter

Figure 20: Extract from Intel D415's datasheet

The complete track layout with measurements can be found in the appendices. It has a length
of 11 meters and a width of 6.5 meters.

A —'—I
: Caméra
SECTION A- A
65.8°
e g
41.8°
!
.|
8500 |
~=— 11000 T | . 6500 |
1
A -

Figure 21: Intel D415 placement for full track view

With an FOV of 69°x42° the camera needs to be placed at least 8.5 meters above the
ground to have the whole track in the frame.

31

2.4.3 RECAPITULATIVE TABLE

Name FOV Height Connectivity |Power supply|Resolution @ 30fps |Price [chf]
Intel D415 69°x42° 8.5m USB USB 1920x1080 250
Raspberry WWCAM | 122°x89.5° | 3.4m |Direct to Raspberry Raspberry 1920x1080 25
Axis M2025-LE 115°x64 55m Ethernet cable POE 1920x1080 660
DLink DCS8627-LH |123.8°x65.4°| 5.5m WiFi Power cable 1920x1080 109

The Axis camera would be a great option if only the lens had not been replaced reducing
significantly the FOV. Using a Raspberry powered on a battery bank with a camera module
would be a very flexible solution but would require some work to setup the video stream

transmit. Connecting a webcam like the D415 with a USB cable is not possible due to the
loss of quality caused by the length of the cable required.

The most suitable camera is the DLink DCS-8627LH, its downside come from the fact that is

not a camera made for industrial or professional use. The features available to configure it

are limited.

32

2.5 DRONE

2.5.1 CONCEPT

Stated in this thesis description, there is the optional goal to use a drone for this project instead
of a fixed camera. This section is an analysis of the potential to integrate a drone.

2.5.2 PROS AND CONS OF USING A DRONE

The idea behind the use of a drone is to make it fly directly over and made it follow the car as
it runs down the track. There wouldn’t be a good enough reason to have a drone flying still
above the track as it would give the same result than a fixed camera.

The advantage of a drone flying directly over the car is that it would be more precise. It would
greatly reduce the problem of markings being obstructed due to the height of the vehicle (see
Figure 22). It would avoid interferences from other persons or object on the track as the view
will be focused on the car and its proximity.

Camera VS Drone
Point of view

/ Car Car \

Figure 22: Representation of the difference in P.O.V between a camera and drone setup

However, flying a drone inside a close space such as the library bring some safety concerns.
The drone would be flying quite low, making a lot of noise. Most camera drone have an
autonomy between 15 to 30 minutes which would require frequent battery changes during the
race.

33

2.5.3 OPTIONS AVAILABLE

Here are the required specifications the drone must have:

a) TRACKING CAPABILITIES

Either with an integrated feature or custom flight controller, the drone must be able to
follow the car.

b) DOWN FACING CAMERA
The camera must be able to point down.

c) OPEN VIDEO FEED

There must be a way to acquire the video feed and transmit it to the image processing
unit of this project.

d) DECENT SIZE
The library is quite small, the smaller the drone can be the better.

€) DECENT FLIGHT TIME
If the autonomy is too short, it would require too many battery swaps.

f) Low PRICE
The budget is limited to maximum 500 CHF.

After some research online, here are the different options found.

First, there is the DJI Tello Drone.

Figure 23: Dji Tello Drone [14]

The DJI Tello drone is a compact, beginner-friendly quadcopter with a user-friendly app, stable
flight, basic camera capabilities, and programmable features. It offers a Software
Development Kit that allows to create custom applications and control the drone's flight,
camera, and other functionalities. With a low price of 115 euros, it would be the ideal choice.
But the camera is fixed and pointing straight at the horizon.

34

There is also the Parrot Anafi Ai:

N

<3
x g S
N\ :

Figure 24: Parrot Anafi Ai Drone [15]

The Parrot Anafi Ai is an advanced foldable drone equipped with Al-powered features, 4K
HDR camera, thermal imaging capabilities, and a developer-friendly SDK for creating
specialized applications. As an industrial drone it matches almost all criteria except for the
cost, with a selling price of 4000 euros, it won't fit in this project’s budget.

An alternative is to build a custom drone. It something quite common in the RC drone world.
It would be a great solution as it would be possible to build one that matches exactly all criteria.

-~ M

1O0VINOI
A A |

Figure 25: OpenCV drone diagram [16]

35

Once the drone is assembled form each individual components such as motors, flight
controller, frame, battery, it then requires programming the flight controller with the
functionalities desired.

Like what has been done in this project [16] found online, a custom flight software can be
implemented, to track markers that would be on top of the cars during the race.

The downside is that it would be really time consuming as the price of individual components

is traded with the time needed to build and program the drone.

2.5.4 CONCLUSION

It's hard to find a drone that matches all requirements. The most suitable idea is to build a
custom drone, but it would involve a lot of building, programming, and testing given it would
only provide the images needed to do the line crossing detection.

Given the time and resource constraints of this project, we decided to put aside the drone
implementation.

2.6 EVALUATIONS METRICS

Metrics Description Goals

.. . . . Same time measurements
Timing Timing precision .
as the previous system

Harmonic mean of precision

F1 score 100%
and recall
Mock-up Quality of the built mock-up Robust and easily transportable
... | Capacity of the system to adapt Tolerant to lightning changes
Adaptability pacity . y P . ; . g_ e
to environment changes Work with any circuit shape
. Easily understandable results on a web page
Ease of use Complexity of the system

System parameters adjustable from web page

Figure 26: Evaluation metrics defined for this project

Based on the analysis made, here is the evaluation metrics chosen for this project. They will
be used to evaluate the results of the prototypes or final proof-of-concept.

Note the 100% F; score goal may be too ambitious but for this application, no error can be

tolerated as all the teams needs to have fair judgment. This is a long-term goal while the
system can be improved and manual correction is applied to detected errors.

36

3 CONCEPTION

3.1 GoAL

Now that the different tools and techniques available are clearer, it's time to move towards a

functional proof-of-concept.

The Figure 27 shows the four global tasks to achieve.

Image Image Data

Acquisition — > Processing — > Extraction

Figure 27: Decomposition in sub- tasks

Data
Display

The main challenge of this project is the image processing and data extraction part. But since
the system will be tested live during the race, a decent user experience enabling data

visualization and parameters control must be present.

This section discusses the initial design phase but as this is an iterative project process, the

different elements presented will evolve.

3.2 ACTORS

To start the conception of this system, it is essential to define the different actors that will

interact with it. Here is an UML diagram that represents them.

Supervise the race

Start each race I I @

Referee Competitor

Correct
timings/penalties

Install the system
(camera, pc, etc.)

Operator Spectator

Figure 28: Actors and their respective tasks

the results/leaderboard

53 Ei Watch the race

37

Operator

Referee

«install»

PC

>

Juuse»

Camera

Big screen
with race
information

/N

|
|
|
! «watch»
|
|

Competitor

Figure 29: Actors and main system components interactions

<C---q
«watch»

Spectator

The two main sides of this project are well reflected on these diagrams, some actors directly
interact with the system to control it, manage the race while others only want access to the
information produced.

3.3 SEPARATION

Following discussions with the “client” professors it appeared clear that it would be nice to
have information displayed on a webpage.
Therefore, the choice is made to build an architecture with a separate data processing unit
(the back-end part) working with a web server that will display information (the front-end part).

Camera

Processing Unit

Processing

2 |

Web server

Figure 30: Minimalistic components architecture

Display

Web browser E

This design allows sub-systems to be developed and tested independently.

38

3.4 PARTS ROLE

Now that the system is divided into two main parts, it is time to define each one’s role and
tasks as well as the data needed and produced for each block.

Image Image Data Data

Acquisiion [Processing [Extraction [Display

Figure 31: Sub-task repartition with blue for back-end and green for front-end

3.4.1 FRONTEND

The main goal and purpose of the front-end is to provide a user-friendly and interactive
interface for users to access, visualize, and interact with the processed data acquired from the
back end. It should facilitate the system management so anyone even if not familiar with the
project can understand and use the system during the race.

Displaying data will involve a web server that hosts a web page. The content of the web page
is established based on the discussions with the “client”.

Web page
Timing Detected :
of crossings Vehicle
the run location position
Penalty Buttons Scoreboard
count for system control

Figure 32: Content of the webpage with the nice-to-have ones in green

3.4.2 BACKEND

Most of the information displayed by the front end, is produced by the back end. Therefore, its
role is to acquire images from the camera, to process them and use the different techniques
tested previously to extract data out of them.

The next section discusses what data are exchanged between these two parts.

39

3.5 DATA EXCHANGE

Back end

«send» Live video feed

with timing

«receive» >

J”@eirjcjyﬁ> Live information

«receive» >

«send»

Run data

«receive» >

receiver |

Control
commands

< «sends»

Front end

Figure 33: Representation of the data exchanged between the front and back end

By transmitting a live video feed, it enables to have multiple elements exchanged in one

transaction. A frame contains the live position of the vehicle, the area where crossings have
been detected can be superimposed on it as well as the timing.

Live information contains data about the current run, like penalty count, run status,

participant id, etc.

The run data element is a summary of all useful information about a run and will be
transmitted at the end of the run to be saved. This allows to have an history of all recorded

run that can be displayed in the scoreboard.

40

3.6 MocCK-UP

3.6.1 THE NEED FOR A MOCK-UP
As the system’s installation will not be possible before a few days prior of the race, it is
necessary to design a way of testing the system with similar conditions.

The goal is to test the behaviour of the system using a real camera. It will show problems
related to lighting conditions, shading, camera noise, etc.

A board with a top-down view of the track printed on it was ordered. Everything is at 1/10
scale.

Figure 34 : Printed board with racetrack

3.6.2 FRAME AND CAMERA SUPPORT

The goal is to have a mock-up that is easily transportable and reusable for presentation or
promotion.

There are two main issues to address: rigidifying the panel and building a camera mount.

As the printed board is not stiff enough on itself, a wooden frame is placed underneath.
Handles are mounted on the side of the frame allowing to move the mock-up easily.

The camera will be mounted at the end of a steel tube that can slide on top of a wooden pole
connected to the frame.

Most of the parts are be 3D printed.

The parts were designed using Onshape. Onshape is a web-based CAD platform that
provides accessibility and version control. It allows multiple users to create, edit, and share
3D models and drawings in real time, eliminating the need for complex installations or local
file storage.

Here is a link to access the Onshape documents with all parts of this project.
https://tinyurl.com/rticdCAD

41

https://tinyurl.com/rtlcdCAD

3.6.3 EXPLODED VIEW AND PARTS DESCRIPTION

1. Wooden frame: is made of 18mm x 47mm lumbers. Its dimensions match those of
the printed board.

2. Handles: are 3D printed and have two holes so they can be screwed directly on the
side of the wooden frame.

3. Base: is 3D printed and will connect the pole to the frame. As the first design was too
big to fit on the bed of the printer, the second is made of three parts. The two side
arms are fixed to the middle part using screws and threaded inserts. The pole and
frame are secured using wood screws.

4. Pole: is a 33mm x 57mm lumber. It will be cut to the right size depending on what
height the camera must be positioned.

5. Tube-Pole Connector: This is a 3D printed part that joins the steel tube and the pole
together. It also enables the tube to slide back and forth so the camera position can
be adjusted. Once the camera is set the tube can be locked in place using two bolts
and butterfly nuts.

6. End cap: is 3D printed and will be placed at the end of the steel tube. The camera
will be screwed on it.

42

3.6.4 OVERVIEW

Here is what the complete mock-up drawing looks like and how it turned out.

Figure 35 : Virtual overview of the mock-up

Figure 36: Overview of the mock-up built

43

3.6.5 TEST VEHICLE

Since the mock-up is at 1/10 scale, it was pretty hard to find a RC car small enough. This Tiny
Revell Mini Car was bought.

Figure 37: Revell Mini Car

It fits inside the track but it is slightly too big and its turn radius does not allow it to stay inside
the limits during turns. Even if this mini car does not permit to simulate an entire run, it still
allows to do some basic tests.

44

4 THE PROTOTYPE

4.1 PROTOTYPE CONCEPT

The goal is to develop a prototype to validate the design choices made during the initial
conception phase. As a first prototype, it will focus on essential features proofing while the
final proof-of-concept will focus on the adaptations needed to use the system during the actual
race.

4.2 BACK-END

The back-end part is a Python project that consists of the main.py script and a JSON file to
save different parameters values. It was first developed as a standalone app without front end
communications. The changes made for it to work together are described in the section 4.3.7-
Back-end modifications.

Here’s an overview of the different steps from image acquisition to extracted data.

generate_processed_frames

Prepare for nextrun
Read next frame

Moving object
. detection
Line crossings
Create median frame detection

and run state

J

Output resultimage

Count crossings

Save run data

Define limits mask

Define track mask

djuli

ninih

I
|
I
|
|
|
|
|
|
|
|
[
|
[
|
I
|
I
|
|
|
|
|
|
|
- |
Update time |
|
[
|
[
|
I
|
I
|
|
|
|
|
|
|
|
[
|
[
|
I
|
I
|
|
|

and display it

Figure 38: Activity diagram for the back end

The next sections give more details about these steps.
More details on the project’s configuration can be found in the Read.me file on the Gitlab
repository:

https://gitlab.hevs.ch/SPL/bachelorthesis/2023-relicrode/rtlcd/

45

https://gitlab.hevs.ch/SPL/bachelorthesis/2023-relicrode/rtlcd/

4.2.1 CREATING A MEDIAN FRAME

The chosen method to detect the car is the background subtraction technique and it requires
a reference image.

To create the reference image, the script will collect a few frames from the video stream and
then compute the median value for each pixel. This way the frame will contain only the static
part of the image.

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

def compute_median_frame(media_path):

Acquire media
cap = cv2.VideoCapture(media_path)
Randomly select 25 frames
framelds = cap.get(cv2.CAP_PROP_FRAME_COUNT) * np.random.uniform(size=25)
Store a few frames in an array
frames = []
for fid in framelds:
cap.set(cv2.CAP_PROP_POS_FRAMES, fid)
ret, frame = cap.read()
frames.append(frame)

Calculate the median along the time axis

mf = np.median(frames, axis=0).astype(dtype=np.uint8)
Write median frame to file
cv2.imwrite('median_frame.png', mf)

Close media

cap.release()

return mf

Figure 39: compute_median_frame function

46

4.2.2 DEFINING THE LIMITS MASK

One of the key elements of this process is to detect and isolate the track limits on the image.
This allows to create masks that will define the limits and the outside of the track.

Contrast
Convert _
brigh&t‘ness to Gagﬁi’_'an ————— >
adjustments grayscale

Figure 40: Process to create masks — Part 1

Using the median frame, it starts by applying contrast and brightness adjustments that help to
make the track limits stand out more. Then it is converted to grayscale and a gaussian blur
filter is applied to have better edges detection.

Canny :
————— 2 edge Median Dilute
detection

Figure 41: Process to create masks - Part 2

Then comes the Canny edge detection function that will output a binarized image of the
detected edges. The median blur and dilute parts are some kind of post-processing to further
modify the results if needed.

A graphical user interface (GUI) allows the user to tweak the settings used in those different
steps until the limits are clearly defined on the image.

Canny————————————————| Post process
Blur Dilute:

Canny T1 Filter:

.
[T

Canny T2 Dil_ kernel-

137 3

Show Threshold

Figure 42: Binarization values adjustments window

47

The so-called limits mask is now saved for further use. A good example can be seen in Figure
42, as well as a bad example in Figure 43.

£ Threshold Modifcation - x

Modify values until circuit lines are clearly visibe: ——————————
Canny—— | -Post process

Blur Dilute:
Image

1

S) IJI__ I T
-l—_ Canny T1 Filter:

0
-l—_ Canny T2 Dil. kernel:
200 3

Figure 43: Example of a bad values for binarization

The slider values can be saved in a JSON file and loaded the next time using the
corresponding buttons.

[=] thresholds json E3
=i

"blur™: 2.0,

H "thresh™: 100.C .

4 "dilute™: 2.0,

=] "filter™: 1.0,

& "dilute kernel™: 5.0,

P %]

"brightness"™: -3.0,

8 "contrast™: 17.0,
=] "ca::y_t;": 433.0,

Figure 44: JSON file with saved values

48

4.2.3 DEFINING THE TRACK MASK

Based on the limits mask, the goal is now to segment the image to classify areas either as
inside or outside the track.

The base idea is that the track has the same width all along its path (note that this is the
case for the real race track but not for the test track used as example in this section)
Therefore, by finding the contours that have the same width, it can be assumed they belong
to track and can be classified as inside.

To do so, the code detects contours on the binary image using the cv2.findContours
function. Then it asks the user to draw a box inside the track to approximate the track’s width
based on the box dimensions. Then for each contour, the distances of points in the image to
the detected contours are computed. The furthest point to a contour defines the center of its
inscribed circle which radius corresponds to the width of the contour.

Figure 45: Segmentation of the test track

Figure 46: Segmentation of the actual track

The results show that this technique works well with complex track shape and can work too
even if track width is not perfectly the same all track long.

49

4.2.4 MOVING OBJECT DETECTION

The background subtraction technique works by taking the current frame and highlighting all
pixels that are different from the reference frame. As the background will not have moved, only
the moving object’s pixel will be highlighted.

Technically it is quite simple as it only requires computing the absolute difference between the
two images pixels values. This results in a gradient map where the brightest spots are the
pixels that changed the most.

Then, by applying a binarization using a customizable threshold value, the moving objects can
be clearly defined.

r
[

Figure 47 : Detection of moving objects, the two cars in this case

With the virtual video used for the tests the results are good as there is no lights effect or noise
in the image. The results with a real camera feed were not good at first. The solution was to
eliminate groups of pixels that had a too small area.

50

4.2.5 LINE CROSSING DETECTION

Now that the circuits contour and the moving objects have been detected, it requires only a
bitwise AND mask to reveal where the line has been crossed. On the test video used, the car
on the left stays inside the limits. The one on the right crosses it on multiples occasions.

Figure 48 : Limits crossing highlighted in red

The advantage of this method is that except the reference frame and contours detection
computing that are done in advance, the operations done in real time are simple. They
mostly use B/W images and bitwise operations that are fast.

Now that the borders crossings are detected, there is still the need to extract useful information

out of it. This is when the blob detector comes into play. By setting the right detection
parameters it allows to count the number of crossings.

51

4.2.6 RACE TIMING

The goal is to display a stopwatch as the car runs down the track. It will require the detection
of the start and finish line crossing.

The way it's been achieved during testing is by manually selecting the start and finish zone by
drawing a box around it. Then, a blob detection is executed exclusively in this zone. At first, it
assumed that if a blob is detected that means the car has crossed the start line and when a
second one is detected, it means it has crossed the finish line.

The time is computed using Python’s time library and displayed with OpenCV.

Figure 49 : Time indication displayed in top left and

By the end of the project, this part has evolved quite a lot. First the start and finish zone have
been split up and previously the time was computed by saving the time at the start and at the
end of the run with the time.time_ns function. It meant the time was depending on the
execution time for all the frames. This problem had noticeable effects.

The way chosen to solve this issue is to use the cap.get(cv2.CAP_PROP_POS_MSEC)
OpenCV function that returns the time (in milliseconds) elapsed since the opening of the media
file.

rame;
time [ms] = M x* 1000
framerate

This way the time measured is directly linked to the frames and is not affected by execution
time. The measurement precision is directly defined by the framerate.

Framerate [FPS] | Maximum achievable precision [s] | Maximum achievable precision [ms]
15 0.067 67
24 0.042 42
30 0.033 33
60 0.017 17
120 0.008 8

52

Any standard frame rate over 15 fps can provide half a tenth precision. If the need to go
under a hundredth or a thousandth of as second presents itself, that would require using a
high-speed camera providing a lot more frames per seconds.

A Timekeeper class has been developed to easily track and manage times intervals.

Timekeeper

nsec: int
usec: int
msec: int
sec: int

mins: int

nsec_start: int
nsec_end: int
nsec_delay: int
update()
update(ms)
start()

stop()

convert(ns): m, s, ms
set_delay_ns(delay_ns)
set_delay ms(delay ms)
set_delay_sec(delay_sec)
get elapsed(): m, s, ms
get_time_raw(): m, s, ms
get_time_net(): m, s, ms
as_string(type): string

Figure 50: Timekeeper class UML diagram

This class works the following way, it stores a certain number of hanoseconds that needs to
be updated with the provided methods, then it provides different methods such as retrieving
the time interval in different formatting, starting, or stopping an interval. More specific to this
application, is the possibility to add a delay to the interval, that translates to a penalty in a
race context. The interval can then be retrieved with or without the penalty added.

The timing is displayed on the frame as a text and the information differs depending on the
race state.

53

4.2.7 DETECTING START & FINISH LINE

To automatically detect where the start and finish lines are located, ArUco markers are used.
The start line is marked out by two markers with ID 0 and the finish with ID 1.

The markers are placed at both extremity of the line just as shown in the Figure 51.

Aruco ID 1

Aruco ID 1

Figure 51: Finish line marked with ArUco markers

The function that detects the markers return their ID and the four corners’ coordinates. The
code computes their average to find the middle (shown in Figure 51 as yellow stars). Then, it
detects the orientation axis of the line by comparing the coordinates difference between the
two points. If delta X is smaller than delta Y, then it assumes the line is placed along the Y
axis.

The line’s dimensions are defined by the length between the two markers’ center and by a
defined pixel width.

It then prepares the data needed to crop the original image into two parts where the blob
detection will be used.

If one of the markers pair is not detected, the script will prompt a GUI that asks the user to
manually select the start or finish line.

54

4.2.8 STATE MACHINE

At first the different states of the system were managed by a pseudo state machine using if
statements. This method was not ideal but served to prove the concepts. The creation of the
RaceMgmt class that acts as a proper state machine, makes managing the different states a

lot easier and the code much cleaner.

RaceMgmt
machine: Machine
time_keeper: Timekeeper states

«enums»

participant_id: int init
penalties: int __«usage» . standby
run_data: json running
start_chrono() end
end_chrono() finished

update_run_data()

Figure 52: RaceMgmt’s class UML diagram

reset

running W end crossed

start crossed

reset

standby

lentry: start_chrono()

reset

end —‘——M done finished
entry: end_chrono()

\do: end_done()

Figure 53: RaceMgmt’s state machine UML diagram

55

4.3 FRONT-END

43.1

PURPOSE

In the appendices can be found a list of the different user interface ideas that were thought of.
It starts with the most minimalistic one and ends with the “nice-to-have” more complex version.

This prototype focus on validating design and technologies choices, setting temporarily aside
the separate use cases considerations, to produce a single web page with all elements to be

tested.

4.3.2

TOOLS CHOICE

After searching online, here is a selection of web frameworks that exists.

a)

b)

c)

d)

e)

FLASK

Flask is a lightweight micro web framework for Python. It provides the essentials to
build a web application.

DJANGO

Django is a Python web framework that offers a lot of features for rapid development,
including authentication, admin interface, database, etc. And it is ideal for projects that
requires a full-featured framework.

FASTAPI

Fast APl is a modern and high-performance web framework designed for building APIs.

TORNADO

Tornado is a scalable and non-blocking web framework made for handling real-time
applications. It is particularly good in long-lived connections such as web sockets or
streaming.

BOTTLE

Bottle is a minimalistic web framework focused on simplicity and it is designed for small
scale application and prototyping.

Django was chosen as this project's web framework. Without much experience in web
development, it seemed that most of these frameworks would offers enough features for this
project. The main reason in choosing Django was the fact it had extensive documentation and
a lot of learning or troubleshooting resources.

56

4.3.3 WEB PAGE

Let’s start with the end. Here is a screenshot of the web page created. Each part will be
explained in the next sections.

Car Race Monitoring System

Run Status: running
Time: 0:00:000
Participant ID: 1
Penalty: 0

Participant [Team #1v]
Leaderboard
Car#0 : 0:0:0
Car#1 : 0:7:559
Car#0 : 1:10:100
Car#1 : 9:99:999

Figure 54: Prototype web page displaying race data

4.3.4 VIDEO FEED

This video feed offers a live view of the racetrack, showing the timing and where the vehicle
drove off-track.

Those images are directly streamed from the back-end part. The back-end modifications are
explained in the section 0 — Back-end modifications.

131 <body>

132 <hl=Car Race Monitoring System</hl>

133 <div class="container"s

134 <div class="camera-stream">

135
136 </div>

13 <div class="race-info"=>

4.3.5 RUNDATA

This data is also directly streamed as JSON from the back-end part, and it shows information
about the current run. When a run has ended, it is possible to modify the penalty count if
needed and to start a new run.

57

4.3.6 SCOREBOARD

The scoreboard displays the participant ID and the time. These elements are pulled in
increasing order directly from the database.

When creating a Django project, an SQLite database is automatically available. It will be use
to store the store run data.

—

i) TimeData
id 2 integer
o)) id 2 integer
participant_id integer
))) minute integer
time_run_id integer
)])) second integer
time_final_id integer
) millisecond integer
penalty integer

Figure 55: Database architecture

An API with GET and POST methods was created to enable adding elements in the database
from the back end.

2 usages Aurélien Rithner +1
class RunDatalistApiView(APIView):
Aurélien Rithner +1
def get(self, request, format=None):
myRunData = RunData.objects.all().order_by('time_final")
serializer = RunDataSerializer(myRunData, many=True)
return Response(serializer.data, status=status.HTTP_200_0K)

Aurélien Rithner
def post(self, request, format=None):

serializer = RunDataSerializer(data=request.data)

if serializer.is_valid():
serializer.save()
return Response(serializer.data, status=status.HTTP_201_CREATED)

else:
print(serializer.errors)
return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

Figure 56: Extract from the API code

At the end of each run, the back-end part will push the run data to the database with a POST
request.

58

4.3.7 BACK-END MODIFICATIONS

The back-end part of the prototype had to be modified to stream the video feed and the JSON
file to the front end.

Aurélien Rithner
@app.rouvte(' /processed_stream')
def processed_stream():
return Response(generate_processed_frames(),
content_type="multipart/x-mixed-replace; boundary=frame')

Aurélien Rithner
@app.rovte(' /stream-json')
def stream_json():
return Response(generate_json_stream(), content_type='"text/event-stream')

if __name__ == '__main__"':
init()
app.run(host="0.0.0.0", port=5000)

Figure 57: Flask implementation in the back end
For this task, Flask was used as it is fast to setup. It does not imply great modifications on the
project structure and can effortlessly be added to the existing code.

4.3.8 TwO WAY COMMUNICATION

The different buttons or the drop list on the screen are not yet implemented and would require
a two-way communication between the front and back-end parts.

Adding an API on the back-end part to trigger the start of a new run, or to inform it about the
current participant will be the solution implemented in the final proof-of-concept.

59

4.4 RESULTS

Metrics Goals Results

Same time measurements
as the previous system
F1 score 100% No value

Timing To be tested at the actual race

Works great to test the system

Mock-up Robust and easily transportable Robust and easily transportable
Camera mount and position easily adaptable

. . Not dependant to a specific track shape
Tolerant to lightning changes P P P

Adaptabili . . Can adapt to environment easil
P ty Work with any circuit shape . . p . v
with adjustable parameters in the GUI
Easily understandable results on a web page Simple web page with clear information
Ease of use

System parameters adjustable from web page | No parameters control from web page implemented yet

Here is a table that sums up the prototype results based on the evaluation metrics previously
defined in paragraph 2.6.

To evaluate the timing precision, the previous system using start and finish barriers is needed,
hence the need to wait for the actual race.

The prototype proved it can successfully detect limits crossings, but not enough tests were
made to calculate a relevant F1 score.

Figure 58: Result frame with the crossings detected

The overall features of the prototype work well but more testing time is needed to fully quantify
the results.

Rather than focusing on perfect results outcome for a particular setup, energy was put into
making the system flexible and easily adaptable. Therefore, the current results can be
improved by tweaking the different parameters provided.

60

5 FINAL PROOF OF CONCEPT

5.1 ITSGOAL

The goal of this final proof-of-concept is to put to use the two parts developed during the
prototyping phase during this year’s summer school race.

5.2 CONCEPT & INSTALLATION

The prototype was developed so it can be used in the final proof-of-concept without much
additional work except for the few modifications listed in the next section. Therefore, most of
the work for this part resides in the physical installation and test phase planification.

The camera used will be the DLink DCS-8627LH. It will be mounted between the two concrete
pillars using straps. The camera is configured on the school network and connects
automatically to the appropriate Wi-Fi.

This allows for the PC used as processing unit and web server to be placed anywhere in the
school where it has access to the network. Then any another device that can display an image
on the big screens of the library and have access to the school local's network can be used to
display the web page.

To facilitate the racetrack detection, the use of a green tape instead of the yellow wire is
recommended.

In the previous races, black grip tapes were placed on the aluminium bridge. That creates a
striped pattern that interferes with the racetrack markings detection. The solution would be to
paint the bridge in black.

5.3 PRINCIPAL DIFFERENCES WITH THE PROTOTYPE

5.3.1 DIFFERENT WEB PAGES

The idea is to keep the same page already in place for the system operator and add another
page that will only display the video feed and the scoreboard. This new page will be displayed
on the big screen in the library for the spectators to watch.

5.3.2 WEB PAGE CONTROL

The current buttons of the web page are not functional yet. An API on the back-end side needs
to be implemented so the buttons can work properly.

5.3.3 TRACKING OF THE VEHICLE

Interferences in the crossing detection caused by a person walking in the frame or some
shadows, could be prevented by tracking the vehicle and applying the detection on a limited
region of interest around it.

61

5.4 LIMITATIONS

One of the main problems that has been overlooked during this project, is the presence of a
concrete pillar inside the racetrack perimeter. That means one portion of the circuit is not
visible from the camera.

While the eventuality to use multiple cameras placed around the track was discussed and so
the design of the system was kept modular, it was never implemented due to time constraints.
For the moment, this part of the track will have to be manually monitored.

5.5 TESTING PHASE AND RESULTS

Some initial testing can be realized on the mock-up while waiting for the complete installation
on the library, but the main tests will happen during the actual race.

Data needed to calculate the accuracy of the system will be gathered.
The results will be presented during the defence of this thesis.

62

6 MACHINE LEARNING

6.1 CONTEXT

If the drone solution had been chosen, another image processing technique should have been
used. With an ever-moving image, background subtraction and pre-processing of track limits
cannot be used. In this case training a model with machine learning becomes an interesting
choice as the results should be more tolerant to environmental changes such as light, noise
etc.

One of the most complex tasks to build a reliable model is to have a great dataset.
The dataset shall have coherent, useful, and representative data and be extensive. Especially
for this application with high-resolution image, many images need to be generated.

To simplify this task the choice was made to create a virtual environment in Unity and use
scripts to automatically render a lot of images.

6.2 DATASET CREATION

6.2.1 SETTING UP THE VIRTUAL ENVIRONMENT IN UNITY

After a few tutorial projects, a new scene was created for the virtual environment. The track
surface was placed together with a small car. Different scripts were added to control the car
manually with the arrow keys of the keyboard, move the camera etc.

6.2.2 RANDOM PLACING OF THE CAR

Once the scene was set, a script was created to place the car automatically and randomly on
the track. For the tests purpose, only the rotation and position of the vehicle changes. But in
future development to further improve the dataset other parameters like camera angle, camera
offset, lights and shadows would need to be slightly changed randomly.

6.2.3 AUTOMATIC IMAGE CLASSIFICATION

The goal of the script is to generate hundreds of images with the car placed randomly on the
track. But it would still take a lot of time to manually classify those images into the “inside” or
“outside” categories.

Figure 59: Inside and outside image generated

63

Since Unity is a game engine, it is relatively easy to implement objects collision detection. The
idea is to have a transparent object that corresponds to the outside space of the track. When
a collision is detected between the car and this object, Unity will know the car is outside of the
track and can automatically classify the image generated.

This transparent object was created using Blender.

6.2.4 CONVEX MESH CHALLENGE

This collision idea detection seemed a good idea but revealed itself to be quite challenging for
this application and with this much experience in Unity and Blender.

To detect a collision between objects, Unity needs to have a collider mesh for each one of
them. It can automatically create one using simple shapes like boxes or spheres which are
not precise enough in most cases, but it can also generate a polygon shaped mesh collider.

The problem is that Unity supports only convex mesh collider, so it won’t work with our special
shape that has concave spaces.

Original Mesh Mesh Collider Complex Collider
(Convex) (V-HACD)

iz

Figure 60: Convex VS Complex Mesh colliders [17]

The way to get around this issue is to decompose the original part into a lot of pieces that will
have convex mesh colliders.

64

Figure 61: The "outside zone" object decomposed in Blender

This was done in Blender by creating a grid and then using the Boolean tool to cut the object.

Figure 62: Colliders highlighted in Unity

Existing paying plugins are available on the Unity store and some open ones can be found on
GitHub [17].

65

6.3 THE TRAINING

6.3.1 KAGGLE

After looking online for some examples and code samples, it was decided to use Python and
Keras to write a script to train the model.

At first, the script was run in PyCharm on the lab computer, but the processing power was not
enough to efficiently train models.

The alternative chosen was Kaggle. Kaggle is an online platform for collaborative machine
learning projects. It is well known for the data science competition that are regularly held on
the platform. Once a free account is created, users can create notebooks, test, and run their
code. Once an account is verified, it gives access to accelerator such as GPU and TPU to
help process data faster.

Here is a link to the Kaggle notebook created for this project:
https://www.kaggle.com/code/axalppro/rticd

6.3.2 MODEL ARCHITECTURE

As previously seen in the state-of-the-art, CNN models are the most suited to image
recognition.

This architecture is based on standard examples found online and was tweaked with the help
of a professor specialized in machine learning.

Model architecture
model = Sequential()

Add convolutional layers

model .add(Conv2D(32, (3, 3), activation='relu', input_shape=[+*IMAGE_SIZE, 3]))
model . a:d(MaxPoolingZD([?, 230

model .add(Conv2D(64, (3, 3), activation='relu’))

model .add{MaxPooling2D((2, 2)))

model .add(Conv2D(128, (3, 3), activation='relu’'))

model . add (MaxPooling2D((2, 2)))

model .add(Conv2D(256, (3, 3), activation='relu'))

model .add{MaxPooling2D((2, 2)))

model .add({Conv2D(512, (3, 3), activation='relu'})

model . add (MaxPooling2D((2, 2)))

Flatten the feature maps
model .add(Flatten())

Add dense layers for classification
model .add(Dense(128, activation='relu'))
model.add(Dense(1, activation='sigmoid')})

Figure 63: Model architecture definition using Keras

It is composed of five convolutional layers that will scan the image input to detect and highlight
relevant features. The “ReLu” activation function will introduce non-linearity to improve the
model’s ability to capture complex patterns.

The pooling layers help to reduce the spatial dimensions of the feature maps while retaining
important information.

66

https://www.kaggle.com/code/axalppro/rtlcd

Then the feature maps are flattened into a one-dimensional vector to prepare data for
processing in fully connected layers.

The dense layers will perform classification based on the extracted features. The final dense
layer with a single unit and “sigmoid” activation will output a probability score that represent
the probability of the input image to belong to a particular class.

fing optimizer
s.optimizers.Adam{learning_rate=0.8681)

Figure 64: Optimizer settings

The chosen optimizer is “Adam” with a learning rate ten times smaller than default. This will
help ensure a steady convergence during training.

6.3.3 ITERATIONS
After a few tests with mitigated results different modifications in the code were made.

f) BALANCED DATASET

Initially the dataset was not balanced with about 20% of the images in the “inside”
category. This was due to the script correctly placing the car on the track randomly but
since most of the area is considered “outside”, only a fraction of the images generated
were “inside”. By balancing the dataset, it prevents the model to favour predictions to
any category simply because this category is more present.

g) NUMBER OF EPOCHS

At first, limited by the lab computer processing power, the model was only trained on
a very limited number or epochs, about fifteen. It appeared quite clear a lot more would
be needed. Lately the model has been trained on about 80 epochs with learning curves
looking a lot better. But some of them shows some signs of overfit, so it would be good
to implement some early stopping to prevent that.

h) NUMBER OF CONVOLUTIONAL LAYERS
As the input image size is quite big, adding convolutional layers and max pooling layers
enable reduce the quantity of information transmitted to the dense layers.

i) SIZE OF INPUT DATA

It's better to show less data but more frequently than showing full resolution images
not enough times. Therefore, it has been decided to reduce by five the resolution of
input images.

67

6.4 RESULTS

6.4.1 LEARNING CURVES

After a few iterations here are the results obtained.

1.0 4

0.9 1

o
w
I

aCcuracy

o
w
1

0.4 1

0.3 1

loss

o
-
i

e
[ay]
1

model accuracy

— train ——
— val

30 40 50
epoch

model loss

1.4

1.2 1

1.0

0.8

0.6

0.4 1

0.2 1

0.0

— ftrain
— val

epoch

68

True Positive Rate

Receiver Operating Characteristic

1.0 1
-~
P
F
F
08 _ ‘;,
-~
P
7~
F
”
-
0.6 i
.
r
”
rd
7
’I
0.4 1 ‘_!
F
F
-~
Fa
F
L
0.2 .
”
F
e
PR ROC curve (area = 0.82)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8

False Positive Rate

1.0

As we can see on the loss learning curve the training curve is good with slow descent
approaching 0.0 and then staying mostly flat but still slowly getting better. On the other hand,
the validation curve seems more hectic at start and then stabilize around 0.3, what is

problematic is it has a slight tendency to go up.

6.4.2 EVALUATIONS

Here are the results of the model performance on the validation set.

Precision| Reacall | F1-score | Support
inside] 0.65 0.95 0.77 221
outside| 0.92 0.56 0.7 255
Accuracy 0.74 476
Macro average|] 0.79 0.76 0.74 476
Weighted Average 0.8 0.74 0.73 476

As the dataset was balanced, the accuracy and f1-score metrics give a similar value. An
accuracy of 74% would not be usable in this application but it is a good starting point.

69

6.4.3 CONCLUSION ON USING MACHINE LEARNING IN THIS PROJECT

Those results are encouraging but more time and knowledge would be needed to continue
improving the model performance to make it usable for this application.

Further improvements could be adapting the code to truly use the accelerator power so it
can train the model more extensively while not taking too much time. While being a simple
notebook options to change, using the Tensor Processing Unit requires to follow a defined
procedure. The Kaggle documentation is very explicit and detailed on this process [18].

Dataset augmentation could be a great way to give the model more material to work with.

Varying the zoom, camera position, camera angle, lightning conditions, adding noise, as well
as changing the car model are possibilities that would enhance the dataset size and quality.

70

7 EVALUATIONS

In this section, an assessment of the project’s results compared to its initial goals is made as
well as a brief analysis about the durability of the project.

7.1 GOALS & RESULTS

The first goal was to do an analysis of the state-of-the-art about line crossings detection.
This resulted in the information gathered and discussed in the section 2.2 - State of the art. It
allowed to have a good overview of the techniques used nowadays in the computer vision
field.

The choice to use standard techniques compared to the machine learning based ones, has
not prevented the training of a CNN model from being tested. This test confirmed the
concerns about the need of an extensive and relevant dataset as well as the process power
and time needed to tune a model.

The realisation of a proof-of-concept with a fixed camera was the second goal. While the
concrete installation of the POC cannot happen before the actual race, the conception and
development of the prototype and the mock-up to test the system are a good step in this
direction. Furthermore, the concept for the POC installation and planned tests that will be
done during the race were described in the section 5 - Final proof of concept.

The third goal was to evaluate the system’s performances. For that, evaluation metrics were
defined in the 2.6 Evaluations metrics paragraph. The results were continuously reported at
the end of each section.

The final objective, which was optional, was to assess the possibility to use a drone instead
of a fixed camera. The section 2.5 - Drone discusses this topic. As no out-of-the-box
commercial drone suitable for this project was found and that building a custom drone would
have been too time consuming, it was decided to not further explore the drone solution.

71

7.2 TASKS & PLANNING

In the project specifications written at the beginning of the project, a list of tasks was made.
Those tasks were used to define an execution planning. Let's compare the initial planning with
the actual one.

Figure 65: Initial planning

Globally, except for the few elements presented next, not much has changed from the initial
planning and most tasks have been executed in times. Here are the few modifications made
during the project.

Initially it was planned to realize two prototypes but after the design phase it was decided to
work on only one prototype with two parts. So, the Prototype 1 and 2 elements in the planning
have been grouped under the Prototype name.

A week worth of work, spanned on two weeks, has been added in early July. It was decided
to test the training of a machine learning model, just before the prototype development.

And the final modification is the postponement of the proof-of-concept development to the last
two weeks of summer school. As the proof-of-concept consists in combining the two parts of
the prototype and applying minor modifications to test it during the race, it was decided to keep
the last two weeks before the 25™ of august to continue and finish this report.

One of the flaws of this initial planning is the lack of scheduled time to test the prototype in
depth as well as the lack of time to complete the report at the end of the project.

72

mai 2023 uin 2023 uillet 2023 aolt 2023 septembre 2023 octobre 2023

@
I~
w
5
w
:
@
@
C
5]

RFEB-2 Analyse
RFED-6 Specifications du probleme
RFEB-3 Etat de l'art
RFELB-5 Prise en main OpenCV
RFLED4 Prise en main caméra [et du drone]
RFEB-F Conception
RFLEB-8 Architecture hardware
RTLEB-9 Architecture software
RFEP-18 Definition prototypes
R¥tEB-34 Test du machine learning
RFLEE-17 Maquette du circuit
RFLED-18 Définir la forme et commander le matériel
RFLEB-12 Trouver un emplacement
RFEEE-28 Terminer la maquette
RFEE-1t Développement et évaluation
RTLEE-12 Prototype
RTLCD-14 POC final
RFEE-25 Rapport
RTLCD-21 Summer School 1
RTLCD-22 Conception des karts

RTLCD-23 Course finale

Figure 66: Actual planning

Here is a table that sums up the state of the tasks at the time of this report is submitted.

Every task has been completed except the ones in realisation as the development of the
final proof-of-concept has been postponed and that it lacked time for proper prototype
evaluation.

Completed
Not done
Tasks State
1|Analysis

a |Problem specification

b |State-of-the-art

¢ |Hands-on Camera and Drone
d

e

Hands-on OpenCV
Evaluation metrics definition

2[(Conception

a |Hardware

b |Software

c |Prototype

d |Maquette
3[Realisation

a |Development
b |Evaluation

73

8 DURABILITY

8.1 INTRODUCTION

The project to develop a complete solution for line crossings detection in the RC vehicle race
held during the "Summer School I" resonates with various United Nations' Sustainable
Development Goals [19], underscoring the potential for broader impacts beyond the event
itself.

8.2 INNOVATION

By integrating computer vision techniques for line crossings detection, the project exemplifies
Goal 9: Industry, Innovation, Infrastructure emphasis on innovation and technological
advancements. While the primary focus is on the library's race, this initiative aligns with
broader technological progress in traffic management and automated vehicle systems.

8.3 FAIRNESS & EQuUITY

The adoption of automated line crossings detection addresses Goal 10: Reduced
Inequalities by ensuring uniform and unbiased penalty administration. It supports Goal 5:
Gender Equality as well as no discrimination based on the gender can be made by this
system.

8.4 CONCLUSION

In conclusion, while durability may not be the principal goal, a correlation between the project
and some of the Sustainable Development Goals is evident. Creating an automatic race
monitoring system highlights the potential for technology and collaboration to contribute to
broader goals of fairness, safety, and innovation in both localized events and the wider context
of automated traffic management systems.

74

9 CONCLUSION

In conclusion, this thesis addressed the challenge of creating a race monitoring system. The
initial phase involved analysing the problem's specifications, exploring hardware choices by
looking at the different cameras and drones available on the market, and investigating
computer vision techniques.

Following this, a prototype was first designed and then developed using Python and OpenCV.
The prototype consisted of two main parts: a backend responsible for image processing, data
extraction, and a front-end web server built with Django. This web server facilitated data
storage and presentation through a user-friendly web page.

To evaluate the system, a test mock-up simulating race conditions was set up. Additionally,
an exploration into machine learning techniques was conducted, involving the generation of
synthetic race images to train a Convolutional Neural Network.

Ultimately, the prototype successfully achieved timing and crossing detection using traditional
methods. The front-end web page provided users with the ability to monitor race information
and view the best recorded times on a scoreboard.

Through a deeper understanding of Python and OpenCV, the setup of a web server with
database, the configuration of a wireless security camera, the introduction to the machine
learning world, some 3D printing and even wood working for the mock-up, this thesis started
from problem analysis to a tangible prototype, making it a diverse and complete project.

Even if this system is dedicated to a local and fun use such as the summer school race, the
computer vision methods used are an entry point towards more complex applications. Line-

crossing detection find relevance in multiple domains like driverless cars, traffic management,
and safety systems.

Sion, le 25 ao(t 2023

Aurélien Rithner

75

10 REFERENCES

[1] HES-SO, [Online]. Available: https://www.hevs.ch/fr/photos/summer-school-2022--hei-

2041109.

[2] N. Joshi, “The Present And Future Of Computer Vision,” 26 Juin 2019. [Online].
Available: https://www.forbes.com/sites/cognitiveworld/2019/06/26/the-present-and-
future-of-computer-vision/?sh=381733a517d8. [Accessed Aolt 2023].

[3] HES-SO Valais-Wallis, “Kart Gallery,” [Online]. Available:

https://wiki.hevs.ch/fsi/index.php5/Kart/gallery. [Accessed 08 2023].

[4] LearnOpenCV, “Edge detection using OpenCV,” [Online]. Available:
https://learnopencv.com/edge-detection-using-opencv/. [Accessed 06 2023].

[5] G. Boesch, “Deep Neural Network: The 3 Popular Types (MLP, CNN and RNN),”

[Online]. Available:
types/.

[6] Wikipedia, “Prec

https://viso.ai/deep-learning/deep-neural-network-three-popular-

ision and recall,” [Online]. Available:

https://en.wikipedia.org/wiki/Precision_and_recall. [Accessed 2023].

[7] T. Wood, “F-Score,” [Online]. Available: https://deepai.org/machine-learning-glossary-
and-terms/f-score. [Accessed 2023].

[8] G. Boesch, “What is OpenCV? The Complete Guide (2023),” 2023. [Online]. Available:
https://viso.ai/computer-vision/opencv/.

[9] Wikipedia, “OpenCV,”
[Accessed 08 2023].

[10] JetBrains, “PyCharm,
[Accessed 08 2023].

[Online]. Available: https://en.wikipedia.org/wiki/OpenCV#.

” [Online]. Available: https://www.jetbrains.com/pycharm/.

[11] OpenCV, “Hough Line Transform,” [Online]. Available:
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html. [Accessed 2023].

[12] S. Mallick, “Object Tracking using OpenCV/’ [Online]. Available:
https://learnopencv.com/object-tracking-using-opencv-cpp-python/. [Accessed 2023].

[13] OpenCV, “Camera Calibration,” [Online]. Available:
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html. [Accessed 2023].

[14] DJI, “Tello,” [Online]. Available: https://store.dji.com/ch/product/tello?vid=38421.

[Accessed 2023].

[15] studioSport, “Parrot Anafi Ai,” [Online]. Available: https://www.studiosport.fr/parrot-anafi-
ai-a22224.html. [Accessed 2023].

[16] C. Bergquist, “Make an OpenCV drone,” [Online]. Available:
https://dojofordrones.com/opencv-drone/. [Accessed 2023].

[17] rorygames, “V-HACD - Complex Colliders,” [Online]. Available:
https://github.com/rorygames/VHACD. [Accessed 2023].

[18] Kaggle, “Tensor

Processing Units,” [Online]. Available:

https://www.kaggle.com/docs/tpu. [Accessed 2023].

[19] United Nations, “17

Goals to Transform Our World,” [Online]. Available:

https://www.un.org/sustainabledevelopment/. [Accessed 2023].

76

11 APPENDICES

11.1 PROJECT SPECIFICATIONS

REAL-TIME LINE CROSSING DETECTION
AND 2D/3D MAPPING [USING A LOW-COST
CAMERA DRONE]

Professeur: Carrine Francesco Etudiant: Rithner Aurélien

CAHIER DES CHARGES

1. Contexte du projet

Dans le cadre des « Summer School | » de |a filiére Systémes Industriels de la HES-S0O de Sion, les étudiants
disposent de trois semaines pour réaliser un petit véhicule télécommandé. A la fin du projet, les différentes
équipes s'affrontent lors d'une course. Le circuit est tracé au sol 3 'aide d'un fil, il comporte des virages ainsi
qu'un pont. Les éguipes recevront une pénalité si leur véhicule franchi les limites du circuit pendant la course.

2. But du projet

Le but de ce travail de Bachelor est de fournir une solution pour détecter automafiquement avec des caméras
et en temps réel, le dépassement des lignes de marquages au sol par un véhicule. Ce projet testera aussi les
possibilités et contraintes offertes par I'utilisation d’'un drone low-cost 3 1a place d'une caméra fixe.

3. Objectifs

Analyse de 'état de I'art des algorithmes pour la détection des dépassements
Réalisation d'une Proof-Of-Concept avec des caméras fixes

Evaluation des performances du systéme

Optionnel : analyse-réalisation-évaluation avec un drone

4. Taches
1) Analyse
a) Spécifications du probléme - contraintes et possibilités en termes d'installations, sensibilité au

b)

V1.1

changement d'environnement (luminosité, ..), sécurité, bande passante, puissance de calcul, etc.

Etat de I'art - Réaliser un bref état de I'art des algorithmes pour la détection des lignes de marguages au sol
et dépassement

Prise en main des caméras [et du drone] - angle de vue, nombre et résolution nécessaire, etc.

Prise en main de OpenCV : Tester les fonctionnalités de la librairie OpenCV, réaliser quelques
programmes tests, définir si le marquage au sol utilisé précédemment peut &tre utilisé ou s'il doit &tre adapte

Definitions des métriques d'évaluation des performances : Définir quels critéres permettront d'évaluer le
fonctionnement du systéme p ex. objectifs SMART.

77

2) Conception
a) Hardware : Définition de 'architecture du systéme (hardware), positionnement de la caméra, machine
utilisée pour le traitement des images, canal de transmission des données, interface avec les utilisateurs

b) Software : Définition de I'architecture du systéme (software), quels outils pour la détection de ligne/
reconnaissance d'images, protocole de transmission des données, inferface avec les utilisateurs

c) Prototypes - Définition des objectifsfimites pour 1 & 2 prototypes vers le Proof-Of-Concept final, spécifier
les points que les différents prototypes pemetiront de tester

d) Maguette - Définition de la forme de la magquette, commande du matérel, recherche d'un emplacement

3) Développement et évaluation

a) Développement : Réaliser concrétement les différents prototypes jusqu'a la réalisation du POC final et de
maniére itérative

b) Evaluation : Tester le systéme suivant les objectifs et métrigues définis pendant la phase d'analyse, aussi
de maniére itérative durant le développement

5. Planning

RTLCD-2 Analyse +*
RTLCO-6 SpécHications du probiame
RTLCD-3 Eiat deFari
RTLCO-5 Frse en main CpenCV
RTLCO-4 Prise &n main camdra [et du drone]
RTLCD-? Conception *

RTLCD-8

Archibecture handware
RTLCD-3 Architeciure software
RTLCD-10 Déinitian pratotypes
RTLCO-17 Maguette du ciroul

RTLCD-1E Dedini la forme et commander be madric!

RTLCD-1% Trouver un emplacement
RTLCD-20 Terminer la maguetbe
RTLCO-11 Développement et évaluation
% RTLCD-1Z Protobype 1
i ATLCD-13 Prototype 2

*on

Figure 1: Planning global Gantt avec les parties principales et leurs fdches. Les « milestones » du projet sont
représentés par les éfoiles rouges.

V1.1

78

6. Milestones

Date Description Délivrables

20.06.2023 | Présentafion intermédiaire o Début du rapport {Introduction, partie analyse)

30.062023 | Fin de Maquette o Maquette du circuit pour effectusr les tests

07.07.2023 | Fin de Conception o Architecture du systémes et définiions des profotypes
o Partie conception du rapport

21.07 2023 | Fin de Prototype #1 o Prototype #1 fonctionnel

04.08.2023 | Fin de Prototype #2 o Prototype #2 fonctionnel

25082023 | Findu TB o Proof of Concept fonctionnel
o Rapport complet

08.09 2023 | Fin de 351 Test du POC pendant les course réelles

V1.1

79

11.2 USER INTERFACE
As mentioned earlier in the problem specifications, there has to be a way the user/public can
manage the system and see the results.

Here’s a few methods that could work:

11.2.1 CONSOLE OUTPUT
The user will run the script processing the images and the results will be displayed in the
console.

Inputs would be terminal inputs with a simple text menu.

11.2.2 CONSOLE & OPENCV WINDOW
The data will be displayed in the console but the user will have a graphical view of the result
in an OpenCV window.

Inputs would be terminal inputs with a simple text menu.
There can be multiple windows opening and closing to show for example the binarized image
with the contours of the track and then the live camera feed.

11.2.3 OPENCV WINDOW ONLY
Displaying the data by adding text to the displayed images in an OpenCV window.

Inputs would be via the waitKey method.

11.2.4 GRAPHICAL Ul
Using a library like PySimpleGUI a full GUI with buttons, sliders and result image can be
displayed to the user.

This method would be easy to use and not too complicated to implement but with the tests
done at the moment the output seems to be a bit slow to process resulting in a pretty large
delay. This is linked with the way the code is built to run the GUI.

11.2.5 FRONT END FOR DISPLAY & BACK END FOR INPUT

A web page could display the result while user inputs are managed by the python script using
any methods previously proposed.

The data could be passed to the web page in a json file and displayed aesthetically on a page
together with the image feed.

This method enables a one central machine for processing and multiple terminals for display
architecture while being relatively simple to implement.

80

11.2.6 FRONT END FOR DISPLAY + INPUT & BACK END FOR PROCESSING

User will be provided with a full GUI on the web page and only the image processing will be
managed in the back end.

This method requires running a web server, and two-way communication.

There would be one page with only the result information displayed to the public/competitors.
And another page with sliders and buttons to control the system.

81

11.3 RACE TRACK DRAWINGS

SR ZI3E BTSIAIIIIIPIA T I)| 50 LD SRR e, T

e == mw Jj0S-S9
$= B e %w H
o] -
I = \”1 LoV N

[B1Z | 93AUIY

0059

0055

82

11.4 CAMERAS SPECIFICATIONS

TECH SPECS

Features Use envirenment: Ideal range:
ndoor/Outdoor Smto3Im

Image sensor technology:
Rolling Shutter

Depth Depth technology: Depth Field of View (FOV):
Stereoscopic 65% = 40°
Minimum depth distance (Min-Z) at max Depth output resolution:
resolution: Upto 1280 = 720
~45 cm

Depth frame rate:

Depth Accuracy: Up to 90 fps
=2%at2m’

RGE RGB frame resolution: RGB sensor FOV (H = V):
1920 = 1080 B69°% = 42°
RGE frame rate: RGB sensor resolution:
20 fps 2 Mp

RGE sensor technology:
Rolling Shutter

Major Components Camera module: Vision processor board:

ntel RealSense Module D415 Intel RealSense Vision Processor D4
Physical Form factor: Connectors:

Camera Peripheral UsB-C* 3.1 Gen 1*

Length » Depth x Height: Mounting mechanism:

99 mm * 20 mm * 23 mm — One 1/4-20 UNC thread mounting point

— Two M3 thread mounting points

Figure 67: Technical specifications for the Intel D145

83

Raspberry Kamera

Raspberry Weltwinkelkamera
.é

Diese hochwertige Digitalkamera mit Weitwinkelobjektiv wurde
speziell fir den Raspberry Pl entwickelt und eréffnet lhnen neue
Maglichkeiten. Sie verflgt Gber einen 5 Megapixel Chip, welcher
Aufldsungen von bis zu 2952 x 1944 Pixeln erméglicht. Je nach
Aufldsung ist eine Bildwiederholrate von bis zu 90 FPS méglich.
Besonders zu erwdhnen ist auch der Einsatzbereich von -30 bis
+70 Grad.

Specifications of Wide-Angle Camera Module
Sensor Type 1/4'

Focal Length 1.67mm
Total Length 16.62mm
F/ND 2.35

Mechanical BFL 3.15
Optical FOV([D) 160°
Optical FOV(H) 122¢
Dptical FOV([V) B9.5°

TV Distortion <<14.3%
Relative [Mlumination >=8504
Chief Ray Angle =<12°
Resolution 5 megapixel
Picture Resolution 2952*%1944
Connection to Raspberry Pi 15-pin Ribbon cable
Ribbon cable 16CM

Figure 68: Page 1 of the technical specifications for the RPI WWCAM

Analog [Digital
Operating: -30°C to +70°C
junction temperature

Temperature Range Stable image: 0°C to +50°C
junction temperature

Optical Format

Figure 69: Page 2 of the technical specifications for the RPI WWCAM

85

TI00B01 SSTEMIM 18452 a2

AXIS M2025-LE Network Camera

Madels AXIS M2025-LE AXIS Videa Motion Detection, active tampering alarm
AXIS M2025-LE Black Supported
AXIS Digital Autotracking, AXIS Cross Line Detection
Comera : Support for AXIS Camera Application Platform enabling
Image sensor 128" progressive scan AGE CMO0S installation af third-party applications, see axis com/ncmp
Lens M 12 mount, Fixed iris, Fxed foous General
:i;";‘:llﬁﬂm [P Casing IFEE-, NEMA 250 Type 4%-, ard IKOB-rated, palymer casing
Verdoal fiekd of viess: B4° Encapsulated electronics, captive serews [Tond® 10]
. M2025-LE: Color: White NC3 5 1002-6
and night Avtomatically remavable infrared-cut filber M202E6-LE Black: Color: Black MCS 5 B000-N
g
Minimum Color: 0.2 lux at 50 IRE, F2.0 Sustainability — PWC free
illumination BifW: 0.04 lux at 50 IRE, F2.0
0 lux with IR illumination on Memary 512 MG RAM, 250 M etk
Fower Pawer ower Ethernet [PoE] IEEE BO2. 3af/802 Ja1 Type 1 Clats 2
Shutter speed 5000
S 1/ES000 5 ko 2 5 Typical 4.1 W, max B3 W
Video Connectors R4S TOBASE-T/100BASE-TX FuE
Video H_264 [MPEG-4 Fart 10/VT) Baseline, Main and High Frofiles S - -
compressicn Matian JPEG IR illumination Power-efficient, long-life 850 am IR LED. Range of reach up to
15 m |50 ft) depending on soene
Resolution 1920 1080 to 160xS0
Storage Support far micraS0fmicraSOHC micraSDXEC card
Frame rate Up to 25/30 Tps with power line Freguency 50/60 Hz Suppert far S0 card eneryplion
Viden streaming Multiple, individually configurable streams in H.264 and Motion Suppert for recording to network-attached starage [NAS)
IPEG Far 50 card and NAS recommendations see oxicon
Axis Zipstream techrology in H.264 wi‘g ~30 "C to 50 °C (-22 F to 122)
Controllable frame rate and bandwidth condEtians i A ;
VBR/ABR/MER H.264 ! Humidity 10 m{:% AH Emmﬂ;g!
5t J -4 °C to 65 “C [-40 °F to 149 "
Multi-view Up to 2 individually cropped oul view areas in full frame rate e Humidity 5-05% RH [non-condersing)
streaming
T - - A . EMC
Image settings Compression, color, brightness, sharness, contrast, bocal e EM 55032 Class A, EN 55024, IEC 62471, EN EI000-6-1,
contrast, white balance, exposure enntrol, WDR - Forersic EN E1000-6-2, FOC Fart 15 Subpart B Class &, ICES-003 Class A,
Caplure: up ta 115 dB depending on scene, rotatian: 0°, 90°, WCC Class A, RCM AS/NZS CISPR 32 Class A, KCC KNI2 Class A
180%, 270" including Coridor Format, text and image overlay, KNS
privacy masks, mirraring of images Esvironment
Pan(TiltfZoom Digital FIZ IEC GOOGE-Z-1, IEC BODGE-2-Z, |EC GO0GA-2-78,
Het it IEC 6O0ES-2-14, |IEC G00EE-2-6, IEC G006E-2-27,
IEC/EM EX262 IKOB, IEC/EN BO5ZD IPEE, MEMA 250 Type 43
Security Password protection, IF address filtering, HTTPS? encryption, Safety
IEEE 802.1x [EAP-TLS]® network aceess control, digest IECIEMJUL 6Z3E8-1, IS 13252
authentication, user access log, centralized certificate IECIENJUL 60950-22
management, brute farce delay protection, signed frmware Hetwork
Supported IPedh, IPvB LISGwE, HTTP, HTTPS?, SSLJTLSA, Qo5 Layer 3 DiffSery, NIST SPE00-267
pratocols FTF, SFIP, CIFS/SMB, SMTF, Bonjour, UPRF™, SNMP vl [uefd Dimersians, Height, straight: 174 mm [E.9 in]
[MIB-N), DS, DynDNS, NTF, RTSF, RTF, SRTF, TCF, UDF, Height, angled: 118 mm [4.6 in]
IGMPyfuZfua, RTCP, ICMP, DHCP, ARF, SOCKS, S5H, LLOF, MOTT a 101 mm%{ﬂ i
LEA N
Weight 0.5 kg [1.1 18]
L . N Inclwded Installation Guide, Windows™ decoder 1-user license, Tor® L-key,
Application Open AP for saftware integration, including VAFIX® and SETETIONIEL Cannectar guard
Programming AXIS Camera Application Platform; specifications at axivcam .
Interface Ore—click claud connecion Optianal AXIS T94B00L Recessed Mount, AXIS T34B02D Pendant kit,
ONVIF® Profile G, ONVIF® Frofile 5, and ONVIF® Profile T. accesiories RIS T4BOTF Canduit Back Bax, AXIS T94BIZM J-Bax/Gang Box
Specifications at anvitfarg Plate, Axid mounts, AXIS Surveillance micraS0KC™ Card
- - A T94 mounts for various installations
Event trigners Analylics, edge slarage events Faf More Steessories, sae mit comume
Event actions Recard widea: S0 card and network share Video AXIS Companian, AXIS Camera Statian, video maragement
[Piaad ol images or video clips: IV, STTR HTIE HITPS, network managemest software from Axis’ Application Develapment Partners available
! software al
Pre- and post-alarm wideo or image buffedng for recording ar i : ; S
upload Languages Engglish, German, French, Spanish, Italian, Russian, Simplified
Natification: email, HTTF, HTTPS, TCP and SNMP trap Chirese, Japanese, Korean, Poruguese, Traditional Chinese
Owerlay text ‘Warranty G-year warranly, see axiscomfmarnanty
fata streaming _Event &at2 This produet includes software developed by the OpenSSL Project for use in th
— a. o inciudes re de fov wie in the
Built-in Fizel counter %’mssa. Toalkit. fwww.openssiong), and cryplogrophic software written by Eric
installation aids wag (B crypleoftcom).
eations (neluded Errviranmental respansibility:

AXIS Mation Guard, AXIS Fence Guand, AXIS Loitering Guarnd

i camy

iblity

Figure 70: Technical specifications for the Axis M2025-LE

86

D-Link

Abbildung

o Status-LED

© PIR-Bewegungssensor

-]

Mikrofon

Technische Spezifikationen

Ricksetztaste
Steckplatz fur
LED-Scheinwerfer microSD-Karten
"® mit 400 Lumen bis 256 GB
Lautsprecher/Sirene
o IRLEDs
Objektiv mit Full
© HD 1080p und
150° Bildwinkel
--© Helligkeitssensor Montagehalterung
far Wand-oder o
Mastbefestigung

Hardwareprofil « progressiver CMOS-Sensor 1/2.9" « Bildwinkel (169}
+ 7m IR-Leuchtweite « honzontak 123,8°
« integriertes abschaitbares Infrarotfiltermodul (ICR) « vertikal: 65,4
« 2,7 mm feste Brenmweite « diagonal: 150°
« Blende F20 « Mikrofon und Lautsprecher integriert

Bildfunktionen « konfigurierbare BildgroBe « Bild invertiersn
+ Personenerkennung + Nachtsicht in Farbe
« Bewegungserkennung (PIR-Sensor, 1 Zone)

Videokomprimierung « Videokomprimierung im H.264-Format
Videoaufiosung « max. Aufidsung: 1080p (1920 x 1080) bei bis zu 30 Bilder/s
Audio » MPEG-2 AACLC

Anbindung « WLAN 802.11n/g mit aktuelier 128-Bit-Verschilsselung « Steckplatz fiir microSD-Karten
nach Industriestandard « unterstutzt Karten bis 256 GB
« WLAN tber das 2,4-GHz-Frequenzband « Bluetooth Low Energy 40
Netzwerkprotokolie « Pv4, IPv6 « RTSP
« DHCP/DHCPv6-Client « SRTP
+ Bonjour {(mDNS und DNS-SD) « RTP/SRTP
+ ONVIF-Profil § « HTTPS

Figure 71: Technical specifications for the DLink DCS-8627LH

87

11.5CAMERAS PLACEMENT HEIGHT ESTIMATIONS

A ""—I
: Caméra
SECTION A- A /
65.8° ,
e g
41.8°
!
"“-_.___
8500 |
—— 11000 T . . 6500 !
A =
Figure 72 : Height estimation for the Intel D415
Caméra
SECTION A - A '
A ———i
116.6°
87.4°
3400 /\
l=— 11000 ; - |- 6500 — =]

A —

Figure 73 : Height estimation for the RPI WWCAM

88

Cameéra
A —-— SECTION A - A

90.0°

61.2°

5500

—=— 11000 ! | 6500

.

Figure 74 : Height estimation for the DLINK DCS-8627LH

11.6 PARTICLES FILTER TRACKING TESTS

Figure 75 : At first particles are distributed everywhere randomly

Figure 76 : Quickly they focus on the green object. In this example there are two identic cars and with the
parameters used they followed only one

90

Figure 77 : With this algorithm the tracking continues after the bridge

Figure 78 : During the 180 degree turn some of the particles drift away but the tracking continues

91

Figure 79 :

Tracking all the way until the end

92

11.7 MOCK-UP PARTS DETAILS

11.7.1 WOODEN FRAME
The frame is made of 18mm x 47mm lumbers. Its dimensions match those of the printed board.

Figure 80 : 3D view of the frame

11.7.2 HANDLES

The handles will be 3D printed and have two holes so they can be screwed directly on the side
of the wooden frame.

Figure 81 : 3D view of a handle

11.7.3 BASE

The main base is 3D printed and will connect the pole to the frame. As the first design was too
big to fit on the bed of the printer, the second is made of three parts. The two side arms are
fixed to the middle part using screws and threaded inserts. The pole and frame are secured

using wood screws.

93

Figure 82 : 3D exploded view of the base parts

11.7.4 POLE

The pole is a 33mm x 57mm lumber. It will be cut to the right size depending on what height
the camera must be positioned.

Figure 83 : 3D view of the pole

94

11.7.5 TUBE-POLE CONNECTOR

This 3D printed part joins the steel tube and the pole together. It also enables the tube to slide
back and forth so the camera position can be adjusted. Once the camera is set the tube can
be locked in place using two bolts and butterfly nuts.

Figure 84 : 3D view of the pole-tube connector

11.7.6 END CAP

This 3D printed part will be placed at the end of the steel tube. The camera will be screwed
on it.

Figure 85 : 3D view of the end cap

95

	firstpage
	Bachelor’s thesis Diploma 2023
	Rithner Aurélien
	Real-time line crossing detection

	spec
	Signature ou visa / Unterschrift oder Visum

	resume
	report_v3

